
CBCS SCHEME

G(s) =
$$\frac{Y(s)}{X(s)} = \frac{5}{1.8s^2 + 3s + 5}$$

Control system is subjected to a step change of magnitude Y(t). Find:

- i) Y(t) at t = 0.5, 1, 1.5, 3, 5 min
- ii) Overshoot
- iii) Radian frequency.

(10 Marks)

(10 Marks)

Module-4

- 7 a. What do you mean by Servo problems and Regulatory problems? Derive the general transfer function of Servo and Regulatory mechanism control problem with the help of block diagram. (10 Marks)
 - b. Explain with a neat sketch, the various components and functioning of a pneumatic control valve.

 (10 Marks)

OR

- 8 a. What are the advantages of Combination of controllers? Obtain expressions for the Proportional Derivative (P-D) and Proportional Integral (P-I) controller. (10 Marks)
 - b. A proportional controller is used to control temperature within the range of 50° 90°C. The controller is adjusted so that the output pressure goes from 3 psi to 15 psi as the measured temperature goes from 61 to 65°C with the set point held constant. Find the gain and the proportional band.

 (10 Marks)

Module-5

- 9 a. Explain in detail bode stability criteria. (08 Marks)
 - Explain the rules to be followed to determine the stability of the system. (04 Marks)
 - c. Give the characteristic equation, $s^4 + 3s^2 + 5s^2 + 4s + 2 = 0$. Determine the stability by Routh criterion. (08 Marks)

OR

10 a. Explain in detail about Root locus diagram.

b. Determine the stability of the control system having the Open loop transfer function given

by
$$G(s) = \frac{K_C}{s(s+1)(s+2)}$$
. (10 Marks)