

18AE/AS42

Fourth Semester B.E. Degree Examination, Jan./Feb. 2023 Aerodynamics – I

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Using control volume approach derive the energy equation in Partial differential form for steady, Inviscid and adiabatic flow.

 (12 Marks)
 - b. Write about types of flow and draw sketches wherever applicable.

(08 Marks)

OR

- 2 a. For 2D potential flow, velocity potential is given as, $\phi = X(2y-1)$. Find the velocity at point P(4, 5). Also find the expression of stream function ψ and value of stream function at point P. (10 Marks)
 - b. Obtain the expression for speed of sound in a calorically perfect gas as a function of temperature only.

 (10 Marks)

Module-2

- 3 a. Obtain the expression for co-efficient of Lift. Drag and moment from surface pressure distribution over the airfoil with neat sketch. (15 Marks)
 - b. Draw the airfoil characteristic curve for symmetric and cambered airfoil and explain.

(05 Marks)

OR

- 4 a. Draw and explain about airfoil nomenclature. Also explain about NACA 4 series 5 series and 6 series airfoils. (08 Marks)
 - b. Explain about centre of pressure and aerodynamic centre.

(06 Marks)

c. Write about types of drag in aircraft.

(06 Marks)

Module-3

- a. Explain how to generate lift using cylinder and prove it by obtaining lift equation. (16 Marks)
 - b. Consider the lifting flow over a circular cylinder with a diameter 0.5 m. The free stream velocity is 25 m/s and circulation is 39.27 m²/s. Density of air at this condition is 0.90926 kg/m³. Calculate lift per unit span on the cylinder. (04 Marks)

OR

- 6 a. Obtain the relation for location of centre of pressure for a cambered airfoil using classical thin airfoil theory. (14 Marks)
 - b. Write about:
 - (i) Kutta condition.
 - (ii) Vortex Filament and Vortex sheet.

(06 Marks)

Module-4

- Write about Biot-Savart law and obtain the expression for Induced velocity for an Infinite, Straight Vortex filament.
 - b. Obtain the fundamental equation of Prandtl's lifting line theory and obtain the solution for (12 Marks) $\Gamma = \Gamma(y_0)$.

- Prove that Induced Drag co-efficient is inversely proportional to the aspect ratio of the wing 8 for Elliptical distribution and write about effect of Aspect ratio.
 - Write about lift and Drag characteristics of complete aircraft. b.

(08 Marks)

Module-5

- Define critical Mach number and obtain the expression for critical pressure co-efficient as a 9 function of critical Mach number.
 - Explain about swept back wing and it's advantages in using in supersonic aircrafts with neat (08 Marks) sketch.

OR

- Explain about, 10
 - Transonic area rule.
 - Ground effects. b.
 - Drag-divergence Mach number.
 - d. Hight lift devices.

(20 Marks)