

18AE/AS52

Fifth Semester B.E. Degree Examination, Jan./Feb. 2023 Aerodynamics – II

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Use of Gas tables is permitted.

Module-1

1 a. Derive an expression for area ratio as a function of Mach number with usual notation.

(10 Marks)

b. Derive the following relation for a Quasi – 1D isentropic flow through variable area duct.

i)
$$\frac{dA}{A} = -\frac{dv}{v}(1 - M^2)$$

- ii) A
- iii) $\frac{m\sqrt{T_0}}{AP_0}$

in terms of Mach number.

(10 Marks)

OR

- 2 a. Air [$C_P = 1.05$ kJ/kg-k, C = 1.38] at $P_1 = 3 \times 10^5$ N/m² and $T_1 = 500$ k flows with a velocity of 200m/s in a 30cm diameter duct. Calculate :
 - i) Mass flow rate
 - ii) Stagnation temperature
 - iii) Mach number
 - iv) Stagnation pressure values

Assuming the flow as compressible and incompressible.

(10 Marks)

b. Calculate the dynamic pressure of the flow if $V_{\infty} = 175 \text{m/s}$, $P_{\infty} = 1$ atm and $T_{\infty} = 298 \text{ k}$. What will be the percentage error? If the flow is treated as incompressible. (10 Marks)

Module-2

3 Derive the following relations for flow through a normal shock wave

a.
$$M_y^2 = \frac{\frac{2}{y-1} + M_x^2}{\frac{2y}{y-1} M_x^2 - 1}$$

b.
$$\frac{P_y}{P_x} = \frac{2y}{y+1} M_x^2 - \frac{y-1}{y+1}$$

(20 Marks)

OR

- a. A normal shock wave with pressure ratio of 4.5 impinges as a plane wall. Determine the static pressure ratio for the reflected normal shock wave. The air temperature in front of the incident wave is 280K. (10 Marks)
 - b. A gas ($\gamma = 1.4$, R = 0.287 kJ/kg-k) at a mach number of 1.8, P = 0.8 bar and T = 373k passes through a normal shock. Determine its density after the shock, compare this value in an isentropic compression through the same pressure ratio. (10 Marks)

Module-3

- 5 Derive the following using oblique shock waves,
 - Rankine Hugnoit equation
 - Prandtl Meyer expansion waves.

(20 Marks)

OR

- 6 A uniform flow at $M_1 = 2.0$ passes over an expansion corner with wall inclination of 10°. Find the Mach number of the flow downstream of the expansion far. (10 Marks)
 - b. Air flow at Mach 4.0 and pressure 10⁵ N/m² is turned abruptly by a wall into the flow with a turning angle of 20° as shown in the Fig.Q6(b). If the shock is reflected by another wall, determine the flow properties 'M' and 'P' downstream of the reflected shock.

Module-4

- Obtain the basic differential equations of motion for steady compressible flows. (10 Marks) (10 Marks)
 - Describe the various methods of solution of nonlinear potential equation.

Derive the Linearized pressure coefficient for small perturbations.

(10 Marks)

(10 Marks)

using Geothert's rule.

(10 Marks)

Module-5

Discuss the power losses in terms of percentage energy loss in the various parts of the wind 9 tunnel. (20 Marks)

- With neat sketch explain the following with advantages and disadvantages: 10
 - Blow down type wind tunnels
 - Continuous supersonic wind tunnels.

(20 Marks)