

CBCS SCHEME

15AE71

Seventh Semester B.E. Degree Examination, Jan./Feb. 2023 **Control Engineering**

Time: 3 hrs.

Max. Marks: 80

Note: Answer FIVE full questions, choosing ONE full question from each module.

Module-1

- Explain the concept of feedback and basic structure of feedback control system. 1 (08 Marks)
 - What are the requirements of an ideal control system? Explain briefly.

(08 Marks)

OR

- 2 Explain the derivation of analogous networks using:
 - i) Force voltage
 - ii) Force current analogy.

(08 Marks)

b. Write equilibrium equations for the mechanical system shown hence obtain F – I analogous system for the given in Fig.Q2(b).

(08 Marks)

Module-2

Reduce the block diagram shown in Fig.Q3(a). Find overall transfer function: 3

Fig.Q3(a)

(08 Marks)

b. Draw SFG from given equations to find

$$x_2 = 4x_1 + 3x_3 + 2x_4$$

$$x_3 = 7x_2$$

$$x_4 = 5x_2 + 6x_3 + 9x_4$$

$$x_5 = 3x_2 + 3x_4.$$

(08 Marks)

(08 Marks)

OR

- Obtain an expression for time response of the first order system subjected to unit step input. (08 Marks)
 - The OLTF of a unity negative feedback control system is $G(s) = \frac{25}{s(s+5)}$. (08 Marks) maximum overshoot, peak time, rise time and settling time.

Module-3

Draw the complete root locus plot for the system with OLTF. 5

$$G(s) \cdot H(s) = \frac{k}{s(s+4)(s^2+4s+20)} \text{ for } K = 0 \text{ to } \infty.$$
 (16 Marks)

OR

Sketch the bode plot for transfer function: 6

$$G(s) \cdot H(s) = \frac{e^{-0.2s}}{s(s+1)}.$$
 (16 Marks)

- Differentiate between time domain and frequency domain. (08 Marks)
 - Obtain polar plot for open loop transfer function: **b**.

Obtain polar plot for open loop transfer function:

$$G(s) \cdot H(s) = \frac{1}{(1+T_1S)(1+T_2S)}.$$
(08 Marks)

OR

- (06 Marks) Explain the principle of argument.
 - Find Gain margin and For a feedback control system, (10 Marks) stability form Nyquist plot.

- Explain PID controller with the block diagram. (06 Marks)
 - What is compensation? Explain Lag and lead compensators. (10 Marks)

- Define the following terms:
 - State i)
 - State variable
 - iii) State vector
 - iv) State space

b. Evaluate the observability of the system with

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 3 & 4 & 1 \end{bmatrix}$$

(08 Marks) Using Gilbert's test.

2 of 2