15CS36

Third Semester B.E. Degree Examination, Jan./Feb. 2023 **Discrete Mathematical Structures**

3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Define tautology. Prove that, for any propositions p, q, r the compound proposition 1 $[(p \to q) \land (q \to r)] \to (p \to r)$ is a tautology. (06:Marks)
 - b. Prove the following logical equivalence using laws of logic

 $(p \rightarrow q) \land [\sim q \land (r \lor \sim q)] \Leftrightarrow \sim (q \lor p)$

(05 Marks)

Show that the following argument is valid,

 $p \rightarrow q$

 $r \rightarrow s$

(05 Marks)

- Give (i) A direct proof
 - (ii) An indirect proof
 - (iii) Proof by contradiction.

For the statement "If n is an odd integer, then n + 11 is an even integer".

Determine the truth value of each of the following quantified statements, the universe being the set of all non-zero integers.

 $\exists x, \exists y[xy = 1]$ (i)

(iv)

 $\exists x, \exists y[xy=1]$ (ii) $\exists x, \forall y[xy=1]$ (iii) $\forall x, \exists y[xy=1]$ (v) $\exists x, \exists y[(3x-y=17) \land (2x+4y=3)]$

Let p(x), q(x) and r(x) be open statements that are defined for a given universe, show that the argument

$$\forall x, [p(x) \to q(x)]$$

$$\forall x, [q(x) \to r(x)]$$

$$\therefore \exists x, [p(x) \to r(x)]$$

(05 Marks)

Module-2

- If n is any positive integer. Prove that $1.2 + 2.3 + 3.4 + ... + n(n+1) = \frac{1}{2}n(n+1)(n+2)$ using 3 mathematical induction.
 - b. How many positive integers n can we form using the digits 3, 4, 4, 5, 5, 6, 7 if we want n to exceed 50,00,000
 - c. A certain question paper contains two parts A and B each containing 4 questions. How many different ways a student can answer 5 questions by selecting at least 2 questions from each part? (05 Marks)

OR

- (06 Marks) Show that $2^n > n^2$ for all positive integers n greater than 4.
 - How many arrangements are there for all letters in the word SOCIOLOGICAL? How many of these arrangements,
 - A and G are adjacent? (i)
 - (05 Marks) All the vowels are adjacent? (ii)
 - c. Determine the co-efficients of,
 - xyz^2 in the expansion of (2x y z)
 - $x^2y^2z^3$ in the expansion of $(3x-2y-4z)^7$ (05 Marks) (ii)

Module-3

- For any non-empty sets A, B, C prove that
 - $A \times (B \cup C) = (A \times B) \cup (A \times C)$ (i)

 $A \times (B - C) = (A \times B) - (A \times C)$ (06 Marks) (ii)

- Prove that, A function $f: A \to B$ is invertible if and only if it is one-to-one and onto. (05 Marks)
- Prove that the relation "Congruent modulo n" is an equivalence relation on the set of all (05 Marks) integers z and n > 1.

- a. Let $f: R \to R$ be defined by $f(x) = \begin{cases} 3x 5 & \text{for } x > 0 \\ -3x + 1 & \text{for } x \le 0 \end{cases}$. Determine f(0), $f\left(\frac{5}{3}\right)$, $f^{-1}(-1)$, $f^{-1}(3), f^{-1}([-5, 5]).$
 - b. Define composition of functions and consider the functions f and g define by $f(x) = x^3$ and $g(x) = x^2 + 1$, $\forall x \in R$. Find $g \bullet f$, $f \bullet g$, f^2 , g^2 (05 Marks)
 - Draw the Hasse diagram representing the positive divisors of 36. (05 Marks)

Module-4

- Determine the number of positive integers n such that $1 \le n \le 100$ and n is not divisible by (06 Marks) 2, 3 or 5.
 - b. Find the number of derangements of 1, 2, 3, 4. (05 Marks)
 - c. Solve the recurrence relation $a_n 6a_{n-1} + 9a_{n-2} = 0$ for $n \ge 2$ given that $a_0 = 5$, $a_1 = 12$. (05 Marks)

- Five teachers T₁, T₂, T₃, T₄, T₅ to be made class teachers for five classes, C₁, C₂, C₃ C₄, C₅ one teacher for each class. T1 and T2 do not wish to become the class teachers for C1 or C2, T₃ and T₄ for C₄ or C₅, and T₅ for C₃ or C₄ or C₅. In how many ways can the teachers be assigned the work (without displeasing any teachers)?
 - b. In how many ways can the 26 letters of the English alphabet be permuted so that none of the patterns CAR, DOG, PUN or BYTE occurs?
 - c. The number of virus affected files in a system is 1000 (to start with) and this increases 250% every two hours. Use recurrence relation to determine the number of virus affected files in (05 Marks) the system after one day.

Module-5

9 a. Explain Konigsberg Bridge problem with figure.

(06 Marks)

b. Show that the following graphs are isomorphic

Fig Q9(b)

(05 Marks)

c. Using the Merge – sort method, sort the list 7, 3, 8, 4, 5, 10, 6, 2, 9.

(05 Marks)

OR

- 10 a. Obtain an optical prefix code for the message ROAD IS GOOD. Indicate the code (06 Marks)
 - b. Define: i) Regular graph
- ii) Complete graph
- iii) Bipartite graph

- iv) Subgraph
- v) Complete bipartite graph.

(05 Marks)

c. In every tree T = (V, E) prove that |V| = |E| + 1.

(05:Marks)

* * * *