CBCS SCHEME

K	BOUL	ECX	18EC55	
III	USN			
ZI.	Date	Oravies	Fifth Semester B.E. Degree Examination, Jan./Feb. 2023	
100	No.	Total .	Electromagnetic Waves	
Sept.	Tin	ne: 3	hrs. Max. Marks: 100	
	Sept and Local Con-	No	te: Answer any FIVE full questions, choosing ONE full question from each module.	
e.				
actic	1	9	The three vertices of a triangle are located at $A(6, -1, 2)$, $B(-2, 3, -4)$ and	ĺ
nalpı	1	a.	The times vertices of a triangle are located at $N(0, -1, -2)$, $B(-2, -3, -1)$ and $C(-3, -1, -5)$. Find (i) $R_{AB} \times R_{AC}$ (ii) Area of triangle (04 Marks)	
d as 1		b.	Define Electric field intensity. Derive the expression for electric field intensity due to	
reate			infinite line charge. (10 Marks)	
lges.		C.	Given the electric flux density $\overline{D} = 0.3r^2 \text{arnC}/\text{m}^2$ in free space.	
uk pa , wil			(i) Find E at point $P(r = 2, \theta = 25^{\circ}, \phi = 90^{\circ})$.	
= 50			 (ii) Find total charge within the sphere r = 3. (iii) Find total electric flux learing the sphere r = 4. (06 Marks))
42+8			(III) I find total electric flak learing the spirot i	
eg, 4			OR	
n me ritten	2	a.	Four identical 3nC (nano Coulomb) charges are located at $P_1(1, 1, 0)$, $P_2(-1, 1, 0)$,
nes o			$P_3(-1, -1, 0)$ and $P_4(1, -1, 0)$. Find the electric field intensity \overline{E} at $P(1, 1, 1)$.)
uatio		b.	Infinite uniform line charges of 5 nC/m lie along the (positive and negative) x and y axes in	
al cro or eq			free space. Find \overline{E} at $P_A(0, 0, 4)$. (04 Marks)	
agon and /		c.	Define Coulomb's law. Make use of this to find the force on Q1. Given that the poin	t
iw di			charges $Q_1 = 50 \mu\text{C}$ and $Q_2 = 10 \mu\text{C}$ are located at $(-1, 1, -3) \text{m}$ and $(3, 1, 0) \text{m}$	
ly dra evalu			respectively. (06 Marks)	,
Isoril al to			Module-2	
appe	3	a.	Explain Gauss law applicable to the case of infinite line charge and derive the relation used (08 Marks	
rs, cc ion,		b.	Evaluate both sides of the divergence theorem for the field $\overline{D} = 2xy\overline{a_x} + x^2\overline{a_y}$ C/m ² and the	
nswe ifical		υ.	rectangular parallelepiped formed by the places $x = 0$ and 1, $y = 0$ and 2 and $z = 0$ and 3.	
our a ident			(08 Marks	
esting your answers, compulsorily draw diagonal cross lines on the remaining plants pages. aline of identification, appeal to evaluator and /or equations written eg, $42+8=50$, will be treated as malpractice)	C.	Given the potential field $V = 2x^2y - 5z$ and point $P(-4 \ 3 \ 6)$. (i) Find potential V at P	
leti alin			(ii) Field intensity E, (iii) Volume charge density ρ_{V} . (04 Marks)

a. Compute the numerical value for $div \overline{D}$ at the point specified below: $\overline{D} = (2xyz - y^2)\overline{a}_x + (x^2z - 2xy)\overline{a}_y + x^2y\overline{a}_zC/m^2$ at $P_A(2, 3, -1)$

(04 Marks)

Show that Electric field is a negative gradient of potential.

(08 Marks)

- Let $E = ya_x^2 V/m$ at a certain instant of time and calculate the work required to move a 3c charge from (1, 3, 5) to (2, 0, 3) along the straight line segment joining
 - (1, 3, 5) to (2, 3, 5) to (2, 0, 5) to (2, 0, 3)
 - (1, 3, 5) to (1, 3, 3) to (1, 0, 3) to (2, 0, 3)(08 Marks) 1 of 3

Module-3

Solve the Laplace's equation for the potential field in the homogenous region between the two concentric conducting spheres with radii 'a' and 'b' such that b>a, if potential V = 0 at r = b and $V = V_0$ at r = a. Also find the capacitance between two concentric spheres.

(10 Marks)

b. State and explain Biot-Savart law applicable to magnetic field.

(06 Marks)

c. Calculate the value of vector current density in a rectangular coordinates at $P_A(2, 3, 4)$ if (04 Marks) $\overline{H} = x^2 z \overline{a}_y - y^2 x \overline{a}_z$.

a. State and illustrate uniqueness theorem.

(08 Marks)

b. Define Stoke's theorem. Use this theorem to evaluate both sides of the theorem for the field $\overline{H} = 6xy\overline{a}_x - 3y^2\overline{a}_y$ A/M and the rectangular path around the region, $2 \le x \le 5$, $-1 \le y \le 1$ (12 Marks) z = 0. Let the positive direction of ds be \bar{a}_z .

Module-4

- Obtain the expression for magnetic force between differential current elements. 7
 - Derive the boundary conditions to apply to \overline{B} and \overline{H} at the interface between two different (08 Marks) magnetic materials.
 - c. The point charge $\theta = 18$ nC has a velocity of 5×10^6 m/s in the direction. $\overline{a}_v = 0.60\overline{a}_x + 0.75\overline{a}_y + 0.30\overline{a}_z$

Calculate the magnitude of the force exerted on the charge by the field,

- $\overline{B} = -3a_x + 4a_y + 6a_z$ mT (i)
- $\overline{E} = -3\overline{a}_x + 4\overline{a}_y + 6\overline{a}_z \text{ kV/m}$ (ii)
- B and \overline{E} acting together (iii)

(06 Marks)

OR

- Find the magnetization in a magnetic material, where
 - (i) $\mu = 1.8 \times 10^{-5} \text{ H/m} \text{ and } H = 120 \text{ A/m}$
 - (ii) $\mu_r = 22$, there are 8.3×10^{28} atoms/m³, and each atom has a dipole moment of $4.5 \times 10^{-27} \, \text{A.m}^2$
 - (iii) $B = 300 \,\mu\text{T}$ and $\chi_m = 15$.

(06 Marks)

- b. Let permittivity be 5 μ H/m in region A where x < 0 and 20 μ H/m in region B, where x > 0. If there is a surface current density $\overline{K} = 150\overline{a}_y - 200\overline{a}_z$ A/m at x = 0, and if $H_A = 300\bar{a}_x - 400\bar{a}_y + 500\bar{a}_z$ A/m. Compute
- (i) $|H_{tA}|$ (ii) $|H_{NA}|$ (iii) $|H_{tB}|$
- (iv) H_{NB}

(08 Marks)

State and explain Faraday's law of electromagnetic induction.

(06 Marks)

Module-5

List and explain Maxwell's equations in point and integral form.

(08 Marks)

b. The time domain expression for the magnetic field of a uniform plane wave travelling in free space is given by,

 $H(z,t) = \bar{a}_y 2.5 \cos(1.257 \times 10^9 t - K_0 z)$ mA/m.

Compute

- (i) The direction of wave propagation.
- (ii) Operating frequency
- (iii) Phase constant.
- (iv) The time domain expression for electric field E(z,t) starting from the Maxwell's equations.
- (v) The phasor form of both the electric and magnetic field. (10 M
- c. For silver the conductivity is $\sigma = 3 \times 10^6$ S/m. At what frequency will the depth of penetration be 1 mm. (02 Marks)

OR

- 10 a. State and explain Poynting theorem and write the equation both in point and integral form.
 (08 Marks)
 - b. Simplify the value of K to satisfy the Maxwell's equations for region $\sigma = 0$ and $\rho_v = 0$ if $\overline{D} = 10x\overline{a}_x 4y\overline{a}_y + kz\overline{a}_z \mu C/m^2$ and $B = 2\overline{a}_y mT$. (06 Marks)
 - c. A plane wave of 16 GHz frequency and E=10 V/m propagates through the body of salt water having constant $\epsilon_r=100$, $\mu_r=1$ and $\sigma=100$ s/m. Determine attenuation constant, phase constant, phase velocity and intrinsic impedance and depth and penetration. (06 Marks)

* * * * *