

15MAT31

Third Semester B.E. Degree Examination, Jan./Feb. 2023 Engineering Mathematics – III

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the Fourier series of

$$f(x) = \begin{cases} 1 + \frac{4x}{3} & \text{in } -\frac{3}{2} < x \le 0\\ 1 - \frac{4x}{3} & \text{in } 0 \le x \le \frac{3}{2} \end{cases}$$

Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$

(08 Marks)

b. Obtain the constant term and the first two coefficients in the Fourier cosine series for y using the following table:

 x
 0
 1
 2
 3
 4
 5

 y
 4
 8
 15
 7
 6
 2

(08 Marks)

OF

2 a. Obtain the Fourier series for

$$f(x) = \begin{cases} -K & \text{in } (-\pi, 0) \\ +K & \text{in } (0, \pi) \end{cases}$$

Hence deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$

(06 Marks)

b. Find a half range Fourier Cosine Series for $f(x) = (x - 1)^2$ in $0 \le x \le 1$.

(05 Marks)

c. Given the following table:

1	V CII t	HC 10	IIO VV II	is inoic			
	x°	0	60°	120°	180°	240°	300°
	У	7.9	7.2	3.6	0.5	0.9	6.8

Obtain the Fourier series neglecting the terms higher than first harmonics.

(05 Marks)

Module-2

3 a. Find the Fourier transform of the function

$$f(x) = \begin{cases} 1 & \text{for } |x| \le a \\ 0 & \text{for } |x| > a \end{cases}$$

where 'a' is a positive real constant. Hence evaluate $\int_0^\infty \frac{\sin ax}{x} dx$.

(06 Marks)

b. Find the Z-T of $\cosh \theta$.

(05 Marks)

c. Solve by using z-transforms $u_{n+2} + 2u_{n+1} + u_n = n$ with $u_0 = 0 = u_1$.

(05 Marks)

15MAT31

OR

(06 Marks) a. Find the Fourier sine and cosine transform of $f(x) = e^{-x}$

b. Find the Fourier transform of the function

$$f(x) = \begin{cases} 1 - |x| & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$$
 (05 Marks)

$$f(x) = \begin{cases} 1 - |x| & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$$

$$c. & \text{Given } \pi(z) = \frac{4z^2 - 2z}{(z - 1)(z - 2)^2}. \text{ Find } u_n.$$

$$(05 \text{ Marks})$$

Calculate the coefficient of correlation for the following data:

Calculate the coefficient of contra	tion	101 11	10 10	60	(0)	70	72
x (Height of Father in inches)	65	66	67	68	69	70	12
X (Height of Latifer in the	67	68	65	68	72	69	71
y (Height of their Son in inches)	07	00	05	00	1		

(06 Marks)

Fit an exponential curve of the form $y = ae^{bx}$ by the method of least squares for the following

uaia.	-		-		0	10
Number of petals	5	6	7	8	9	10
Number of flowers	133	55	23	7	2	2

(05 Marks)

Show that a root of equation $x^3 + 5x - 11 = 0$ lies between 1 and 2. Find the root by Newton-(05 Marks) Raphson method. (Carry out 3 iterations)

OR

Obtain regression line of y on x for the following data:

v	36	23	2.7	28	28	29	30	31	33	35
7.7	20	18	20	22	27	21	29	27	29	28

(06 Marks)

b. Fit a parabola $y = a + bx + cx^2$ for the data:

X	0	1	2	3	4
У	1	1.8	1.3	2.5	2.3

(05 Marks)

Compute real root of x $\log_{10} x - 1.2 = 0$ between 2 and 3 using Regula-Falsi method. Carry (05 Marks) out three iterations.

Using suitable interpolation formula, find y(38) and y(85) for the following data:

X	40	50	60	70	80	90
V	184	204	226	250	276	304

(06 Marks)

Construct an interpolating formula for the data given below using Newton's divided difference interpolation formula.

x	2	4	5	6	8	10
f(x)	10	96	196	350	868	1746

(05 Marks)

By dividing the range into 6 equal parts, find the approximate value of $\int e^{\sin x} dx$ using

Simpson's
$$\frac{1}{3}^{rd}$$
 rule.

(05 Marks)

OR

8 a. Given Sin $45^\circ = 0.7071$, Sin $50^\circ = 0.7660$, Sin $55^\circ = 0.8192$, Sin $60^\circ = 0.8660$. Find Sin 57° using an appropriate interpolation formula. (06 Marks)

b. Use Lagrange's interpolation formula to find f(9), given the data:

X	5	7	11	13	17
f(x)	150	392	1452	2366	5202

(05 Marks)

c. Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ taking seven ordinates by applying Simpson's $\frac{3}{8}$ rule. (05 Marks)

Module-5

9 a. If $\vec{f} = (2y+3)\hat{i} + xz\hat{j} + (yz-x)\hat{k}$, evaluate the integral $\int_{C} \vec{f} \cdot d\vec{r}$ where 'c' is the curve $x = 2t^2$, y = t, $z = t^3$ from the point (0, 0, 0) to the point (2, 1, 1). (06 Marks)

b. Using the divergence theorem, evaluate $\int_{s} \vec{f} \cdot \hat{n} ds$ where $\vec{f} = x^3 \hat{i} + y^3 \hat{j} + z^3 \hat{k}$ and 's' is the surface of the sphere $x^2 + y^2 + z^2 = a^2$. (05 Marks)

c. Find the extremals of the functional $\int_{x_0}^{x_1} \frac{(y')^2}{x^3} dx$. (05 Marks)

OR

10 a. Evaluate $\int_{C} xydx + xy^2dy$ by Stoke's theorem where 'c' is the square in the xy - plane with vertices (1, 0), (-1, 0), (0, 1), (0, -1).

b. Verify the Green's theorem in the plane for $\oint_C (xy + y^2) dx + x^2 dy$ where 'c' is the closed curve of the region bounded by y = x and $y = x^2$. (05 Marks)

c. Solve the variational problem $\delta \int_{0}^{2} [x^{2}(y')^{2} + 2y(x+y)]dx = 0$ given y(1) = y(2) = 0. (05 Marks)