e: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.
O 4
Important Note

18AE72

Seventh Semester B.E. Degree Examination, June/July 2023 **Computational Fluid Dynamics**

Time: 3 hrs. Max. Marks: 100

		IVIAA. IVI	aiks. 10
	Λ	Note: Answer any FIVE full questions, choosing ONE full question from each mo	dule.
		Module-1	
1	a.	Derive an equation for substantial derivative and explain its physical significance.	. (10 Mark
	b.	Derive expression for continuity equation in integral form and differential form.	(10 Mark
		J J J J J J J J J J J J J J J J J J J	(10 1/1411
		OR	
2	a.	Draw neatly and explain about shock fitting and shock capturing technique.	(10 Marl
	b.	Comment on partial differential equation and write no-slip boundary condition.	(06 Marl
	C.	Write about different models of flow.	(04 Marl
			(01111111
		Module-2	
3	a.	How does a quasi-linear partial differential equation classified? Explain using Cra	mer's ru
			(12 Mar
	b.	Write about stability properties of explicit scheme on CFD.	(08 Mar
		OR	
4	a.	Describe the general behaviour of different classes of partial differential equations	s.(12 Mar
	b.	Comment on supersonic blunt body problem using CFD with sketch.	(08 Mar
		Module-3	
5	a.	Write about:	
		(i) Need for grid generation in CFD	
		(ii) Body fitted coordinate system.	(10 Mar
	b.	Write short notes on:	
		(i) Surface grid generation	
		(ii) Mesh less grids and its advantages	(10 Mar
		OR	
6	a.	Explain about different types of grids and its advantages.	(16 Mar)
	b.	Explain the role of grid control functions.	(04 Mar
		Module-4	
7	a.	Explain the importance of discretization and transformation in CFD.	(10 Marl
	b.	Derive Forward, Backward and Central difference approximations to the first	derivati
		along with error terms.	(10 Mark
		OR	
8	a.	For a 2D steady flow, continuity equation in Cartesian coordinates, obtain the tran	sformation

- For a 2D steady flow, continuity equation in Cartesian coordinates, obtain the transformation from physical plane to computational plane using direct and inverse transformation.

 - Differentiate between explicit and implicit approach of finite difference equations. (10 Marks)

9 a. With neat sketch, explain Vertex-Centred and Cell-Centred schemes.
b. Write short notes on Flux Vector Splitting and Upwind Biasing.

OR

10 a. Write the fundamental difference between FDM and FVM with neat sketch.
b. Explain about:
(i) Temporal discretisation
(ii) Spacial discretisation
(iii) Spacial discretisation
(iv) Marks)

* * * * *