

CBCS SCHEME

15AE72

Seventh Semester B.E. Degree Examination, June/July 2023 Computational Fluid Dynamics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Derive non conservative form of momentum equation for a infinitesimally small moving fluid element.

 (10 Marks)
 - b. Explain various physical boundary conditions with suitable examples for CFD problems.

OR

2 a. Explain: i) Shock capturing ii) Shock fitting methods.

(08 Marks)

(06 Marks)

b. Derive the expression for divergence of velocity.

(08 Marks)

Module-2

- 3 a. Apply Cramer's rule to a quarilinear partial differential equation for the mathematical classification as elliptic, hyperbolic and parabolic. (08 Marks)
 - b. Explain the impact of partial differential equation classifications on unsteady thermal conduction phenomenon. (08 Marks)

OR

4 Describe the general behaviour of the different classes of partial differential equation.

(16 Marks)

Module-3

5 a. With the help of relevant sketch explain the elliptic grid generation.

(08 Marks)

b. Define grid quality. List the measures of quality and explain in detail.

(08 Marks)

OR

- 6 a. List the advantages and disadvantages of structured and unstructured grids. Explain in brief.
 - b. Write short notes on: i) Adaptive grids ii) Meshless grids.

(08 Marks) (08 Marks)

Module-4

7 a. Differentiate between explicit and implicit approach of finite difference equations. (08 Marks)

. Write short notes on:

i) Time and space marching in CFD

ii) Upwind schemes in CFD.

(08 Marks)

OR

- 8 a. For the 2D steady flow, continuity equation in Cartesian co-ordinates obtain the transformation from physical plane to computational plane, using direct and inverse transformations.

 (08 Marks)
 - b. Derive the generic form of the governing flow equation with strong conservative form in the transformed space for 2D unsteady flow with no source term. (08 Marks)

15AE72

Module-5

- 9 a. Write short notes on:
 - i) Cell-centered technique
 - ii) Cell-vertex technique.

(10 Marks)

b. With suitable expression explain explicit time stepping scheme.

(06 Marks)

OR

- Describe the following finite volume techniques with their applications:
 - i) Flux vector splitting
 - ii) Spatial discritization.

(16 Marks)

.