

15AE832

# Eighth Semester B.E. Degree Examination, June/July 2023 **Boundary Layer Theory**

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

## Module-1

- 1 a. Develop viscous flow phenomenon over an aerofoil and prescribe necessary boundary condition of the flow. (08 Marks)
  - b. Describe mathematical characterization of governing equations of viscous flow. (08 Marks)

#### OR

2 a. Explain how boundary layer thickness varies with the direction of a 2D steady flow situation and derive displacement and momentum thickness for a boundary layer formed over a flat plate.

(10 Marks)

Module-2

b. Elaborate 'Scale Analysis and Boundary layer approximation'.

## (06 Marks)

- 3 a. Define the stagnation point flow and state equations for:
  - i) velocity distribution
  - ii) pressure distribution, in the case of two dimensional flow.

(08 Marks)

b. Explain coquette flow with a reference to non-zero pressure gradient taking suitable equations and suitable diagram. (08 Marks)

### OR

4 a. Establish the equation for velocity distribution in Poiseuillel's flow.

(08 Marks)

b. Describe an unsteady flow between plates with bottom injection and top section. (08 Marks)

#### Module-3

- 5 a. Derive Von Karman momentum integral equation and highlight its significance in laminar boundary layer. (10 Marks)
  - b. What is shape factor and how is it connected with boundary layer thickness?

## (06 Marks)

- 6 Outline:
  - a. Thermal Boundary layer
  - b. Boundary layer approximation of laminar flow
  - c. Momentum and Energy thickness
  - d. Applications of Navier-Stokes equation.

(16 Marks)

### Module-4

- 7 a. Derive Falker–Skan differential equation with a reference to boundary layer equations for a plane steady incompressible flow. (12 Marks)
  - b. What is Reynold's analogy?

(04 Marks)

## OR

8 a. Demonstrate similarity solution to boundary layer equation for steady two dimensional flow.

(08 Marks)

b. Explain Blasius solution for flat plate.

(08 Marks)

## Module-5

9 a. List down steps followed by small disturbance stability analysis.
b. How do you characterize the turbulence for a physical fluid flow? Explain it.
(08 Marks)
(08 Marks)

#### OR

a. Describe the type of free turbulent flow with useful flow profiles.
b. Illustrate the Schlieren flow visualization technique with neat sketch.
(06 Marks)
(10 Marks)

\* \* \* \* \*