## I Semester M.Sc. Degree Examination, Jan./Feb. 2014 (2010-11 Scheme) (NS) CHEMISTRY

C - 101: Inorganic Chemistry - I

Time: 3 Hours

Max. Marks: 80

Instruction: Answer question No. 1 and any five of the remaining.

1. Answer any ten of the following:

 $(10 \times 2 = 20)$ 

- a) Explain Bent's rule.
- b) How are  $\sigma$ -,  $\Pi$  and  $\delta$  molecular orbitals formed?
- c) The electronegativities of A, B, C and D are 3.8, 3.3, 2.8 and 1.3 respectively. Place the compounds AB, AD, BD and AC in order of increasing covalent character.
- d) Explain why Li+ has higher hydration energy than that of K+.
- e) What is synergic bond? Explain with an example.
- f) How is  $S_a N_a$  obtained? Draw its structure.
- g) What are molecular sieves? Give the composition of ZSM-5.
- h) Explain the term super acids with an example.
- i) Give the significance of the term 'n/p ratio'.
- j) A borane has a styx code 4120. Name the borane and draw its structure.
- k) What are Lewis acids and bases? Explain with examples.
- 1) With respect to sulfur, explain the term polymorphism.
- 2. a) What is meant by partial ionic character of covalent bonds? How is this related to electronegativity?
  - b) Outline the concept of VSEPR model. Based on it, discuss the shapes of  $CIF_3$ ,  $SF_4$  and  $BrF_5$ .
  - c) Draw the resonance structures for OCN and CNO and assign formal charges. (4+4+4=12)



- 3. a) Explain why crystals of ionic compounds are relatively hard and brittle.
  - b) Using Slater's rule, calculate the effective nuclear charge experienced by one of the d-electrons in vanadium.
  - c) Depict a Walsh diagram for AH<sub>2</sub> molecule and based on it explain the shape of water molecule. (4+4+4=12)
- 4. a) How are trimeric and tetrameric cyclophosphazenes prepared? Write the structure of the trimer and explain its bonding.
  - b) Discuss the structure and bonding in borazine.
  - c) Explain the leveling effect of solvents.

(5+4+3=12)

- 5. a) Describe critically the preparation, properties and structure of heteropoly acids of molybdenum.
  - b) Give the classification of condensed phosphates and mention their characteristics.
  - c) Write a short note on shell model.

(5+4+3=12)

- 6. a) How does N<sub>2</sub>O<sub>4</sub> auto-ionize? Discuss its role in preparing anhydrous metal nitrates.
  - b) Discuss the classification and structures of silicates.
  - c) Explain Wade's rules and their use in the classification of boranes and carboranes. (3+5+4=12)
- a) Based on HSAB concept, explain the following:
  Will Cu<sup>2+</sup> react more strongly with HO<sup>-</sup> or NH<sub>3</sub>? With O<sup>2-</sup> or S<sup>2-</sup>?
  - b) Write briefly on the reactions studied in bromine trifluoride solvent.
  - c) Give a comprehensive note on liquid drop model of nucleus. (4+4+4=12)



## I Semester M.Sc. Degree Examination, Jan./Feb. 2014 (2010-2011 Scheme) (NS) CHEMISTRY

C – 103 : Physical Chemistry – I

Time: 3 Hours

Max. Marks: 80

Instruction: Answer question 1 and any five of the remaining.

1. Answer any ten of the following:

 $(2 \times 10 = 20)$ 

- a) State and explain Heisenberg uncertainty principle.
- b) Find out deBroglie wave length for a beam of electrons whose kinetic energy is 100 ev. (Given  $m = 9.1 \times 10^{-28}$ g).
- c) What is J-J coupling?
- d) Distinguish between a wave function and an eigen function with examples.
- e) Why the approximations are necessary in quantum mechanics?
- f) Calculate the effective nuclear charge for 25 and 26 electrons of nitrogen using Slater's rules.
- g) Distinguish between macroscopic and microscopic kinetics.
- h) Write the reaction mechanism for pyrolysis of acetaldehyde.
- i) How do you account for the fact that an enzyme reaction has an optimum pH at which its activity is maximum?
- j) What are the limitations of Lindemann theory of unimolecular reactions?
- k) Give the Laplace equation and explain the terms involved in it.
- I) The rate of a second order reaction is  $4.40 \times 10^{-4}$  dm<sup>3</sup> mol<sup>-1</sup>s<sup>-1</sup> at 30°C and  $9.20 \times 10^{-4}$  dm<sup>3</sup> mol<sup>-1</sup> s<sup>-1</sup> at 40°C. Calculate the activation energy of the reaction.
- 2. a) Formulate the time-independent Schrodinger equation.
  - b) Pointout the concept of operators. Write the Hamiltonian operator for normal He atom and explain each term.
  - c) Solve the Schrodinger equation for the particle in a ring.

(4+4+4=12)



- 3. a) Write the Schrodinger equation for hydrogen atom in spherical polar coordinates and separate it into R,  $\phi$  and  $\theta$  equations.
  - b) What are the quantum numbers? How many quantum numbers has an electron in the atom?
  - c) State the significance of radial and angular distribution functions. (5+4+3=12)
- 4. a) Apply variation method to obtain the ground state energy for a particle in a one dimensional box.
  - b) Outline the HMO method for benzene.
  - c) Obtain the expression for the correction in energy of a non-degenerate system according to first-order perturbation theory. (4+4+4=12)
- a) Derive the relevant rate expression for the first order forward and backward reversible reaction.
  - b) Compare collision theory with transition state theory of reaction rates.
  - c) Predict, giving reasons the effect of an inert electrolyte concentration on the rate constant of the following reactions.
    - i) CH<sub>2</sub>ICOOH + CNS<sup>-</sup> → Products
    - ii)  $S_2O_8^{2-} + I^- \rightarrow Products$

iii) 
$$[CO(NH_3)_5 Br]^{2+} + OH^- \rightarrow Products$$
 (5+4+3=12)

- 6. a) Derive the rate expression for the kinetics of photochemical reaction between  $H_2$  and  $Br_2$ .
  - b) Explain the lock and key mechanism for enzyme catalysed reactions.
  - c) Depict Lineweaver-Burk plot using Michaelis-Menten equation and explain how it is useful to determine the value of K<sub>m</sub>. (5+3+4=12)
- 7. a) Outline the relaxation technique for the study of fast reactions.
  - b) Derive Gibbs adsorption isotherm equation and write its applications.
  - c) Write a brief note on mechanical adsorption. (4+5+3=12)