

21CV42

Fourth Semester B.E. Degree Examination, June/July 2023 Fluid Mechanics and Hydraulics

Time 3 hrs.		hrs.		Max. Marks: 100	
	No	te: Answer any FIVE full questions, c	hoosing ONE full question fro	om each module.	
		M	odule-1		
1	a. I	Define the following with units:			
		i) Mass density	(ii) Specific gravity		
	(iii) Dynamic viscosity	(iv) Surface tension	(06 Marks)	
	b. S	State and prove Pascal's law.		(06 Marks)	
	C. 1	An U-tube differential manometer co	onnects two pipes A and B.		
	((Sp. Gr. = 1.59) under 130 kN/m ² gauge pressure. Pipe B contains oil (Sp. Gr. = 0.82) under			
	2	200 kN/m ² gauge pressure. Pipe A is 2.5 m above pipe B. The manometer contains mercury.			
	(Calculate the difference in mercury	levels. Draw neat sketch.	The level of mercury	
		connected to pipe A is in level with cer		(08 Marks)	
2			OR		
		Derive an expression for total pressure	e and centre of pressure on a p		
		vertically in water.		(06 Marks)	
	b. (Calculate the specific weight, density,	specific volume and specific g	la.	
		iquid which weighs 15 N.		(06 Marks)	
		A 1.2 m \times 1.8 m size rectangular plate			
		horizontal. The 1.2 m side of the plate is kept horizontal at a depth of 30 m below the water			
	5	surface. Compute the total pressure on	the surface and the position of		
			~) ,	(08 Marks)	
3		100	odule-2		
		Explain:			
	,	i) Steady and unsteady flow			
	,	ii) Rotational and irrotational flow	Y		
		iii) Laminar and turbulent flow	4	(06 Marks)	
		Derive continuity equation in Cartesian			
	c. I	List the assumptions made in deriving	Bernoulli's equation.	(06 Marks)	
	1		OR		
	a. S	State and derive the Bernoulli's equation starting from the Euler's equation of motion with a			
•		neat sketch.	on starting from the Euler's equ	(06 Marks)	
		What is venturimeter? Derive an expre	ssion for discharge through a v		
	C. 1	A horizontal venturimeter with inlet	diameter 200 mm and throa	t diameter 100 mm is	
		employed to measure the flow of			
		connected to the venturimeter is 180 r			

- - connected to the venturimeter is 180 mm of Hg. Determine the discharge (Q) is $C_d = 0.98$. (08 Marks)

Module-3

- Explain different hydraulic coefficients and establish the relation between them. 5 (06 Marks) Derive an expression for discharge over a triangular notch. (06 Marks)
 - Water flows over a rectangular notch 1.2 m wide at a depth of 15 cm and afterwards passes through a triangular right angled notch. Taking coefficient of discharge for rectangular notch 0.62 and for triangular notch 0.59. Find the depth over the triangular notch. (08 Marks)

- Explain:
 - (i) Major and minor losses
 - (ii) Pipes in series and parallel

(06 Marks)

b. Derive Darcy-Weisbach equation for head loss due to friction in a pipe. (06 Marks)

Water is required to be supplied to a colony of 4000 residents at a rate of 180 litres per person from a source 3 km away. If half the daily requirements need to be pumped in 8 hours against a friction head of 18 m, find the size of the main pipe supplying water. Assume friction factor as 0.028.

- Define open channel flow. Give the classification of flow through channels with example. 7
 - Define most economical channel section. Derive the conditions for best hydraulic triangular
 - A rectangular channel 6m wide and 1m depth of water has a bed slope of 1 in 900 and is having n = 0.012. Determine the discharge. What will be the dimensions of the channel for maximum discharge with amount of lining being kept constant? Also compute percentage increase in discharge.

- What is specific energy curve? Draw it and derive expressions for critical depth and critical
 - Derive the relationship between conjugate depths in case of hydraulic jump on a horizontal
 - A rectangular channel with bottom width 4m and bed slope 0.0008 has a discharge of 1.5 m³/s. In a GVF channel the depth at a certain section is 0.3 m. If n = 0.016, determine the type of profile.

- Show that for a free jet of water striking at the centre of semicircular vane, the maximum efficiency occurs when the vane velocity is $\frac{1}{3}$ of jet velocity and $\eta_{max} = 59.2\%$. (06 Marks)
 - With a neat sketch, explain the components of Pelton wheel.
 - c. Obtain an expression for the work done per second by water on the runner of a Pelton wheel. Hence derive an expression for maximum efficiency of the Pelton wheel.

OR

- By means of a neat sketch, explain the Francis Turbine.
 - (iii) Suction head
 - (iv) Delivery head, (ii) Static head b. Define: (i) Manometric head (06 Marks) for centrifugal pump.
 - The following data is given for a Francis Turbine.

Net head H=60 m, speed N=700 rpm, shaft power = 294.3 KW, $\eta_0=84\%$, $\eta_h=93\%$, flow ratio = 0.20; breadth ratio, n = 0.1; outer diameter of the runner = $2 \times$ inner diameter of runner. The thickness of vanes occupy 5% of circumferential area of the runner, velocity of flow is constant at inlet and outlet and discharge is radial at outlet. Determine:

- Guide blade angle (i)
- Runner vane angles at inlet and outlet (ii)
- (iii) Diameters of runner at inlet and outlet
- Width of wheel at inlet

(08 Marks)

(06 Marks)