

# CBCS SCHEME

15MAT31

# Third Semester B.E. Degree Examination, June/July 2023 Engineering Mathematics – III

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

## Module-1

1 a. Obtain the Fourier series for  $f(x) = x(2\pi - x)$  in  $0 \le x \le 2\pi$ .

(08 Marks)

b. The following table gives the variations of a periodic current over a period.

| t(sec)  | 0    | T/6  | T/3  | $T_2$ | $\frac{2T}{3}$ | 5T/6  | Т    |
|---------|------|------|------|-------|----------------|-------|------|
| A (amp) | 1.98 | 1.30 | 1.05 | 1.30  | -0.88          | -0.25 | 1.98 |

Show that there is a direct current part of 0.75 amps in the variable current and obtain the amplitude of the first harmonics. (08 Marks)

### OR

2 a. Obtain the Fourier series for the function:

$$f(x) = 1 + \frac{2x}{\pi}$$
 in  $-\pi < x < 0$   
 $1 - \frac{2x}{\pi}$  in  $0 < x < \pi$ .

(04 Marks)

b. Obtain the half-range sine series for the function:

$$f(x) = \begin{cases} x & \text{for } 0 < x < \frac{\pi}{2} \\ \pi - x & \text{for } \frac{\pi}{2} < x < \pi. \end{cases}$$

(06 Marks)

c. Express y as a Fourier series upto the second harmonics given,

| > [ | Х | 0 | $\pi/3$ | $2\pi/3$ $\pi$ | $4\pi/3$ | $5\pi/6$ | 2π |
|-----|---|---|---------|----------------|----------|----------|----|
|     | У | 4 | 8       | 15 7           | 6        | 2        | 4  |

(06 Marks)

#### Module-2

3 a. Find the Fourier transform of the function:

$$f(x) = \begin{cases} 1 & \text{for } |x| \le a \\ 0 & \text{for } |x| > a \end{cases}$$

Hence evaluate : 
$$\int_{0}^{\infty} \frac{\sin ax}{x} dx$$
.

(06 Marks)

b. Find the Fourier sine transform of 
$$e^{-|x|}$$
, show that 
$$\int_{0}^{\infty} \frac{x \sin mx}{1 + m^{2}} dx = \frac{\pi}{2} e^{-m}$$
. (05 Marks)

c. Find the Z-transform of  $\sin (3n + 5)$ .

(05 Marks)

## 15MAT31

OR

4 a. Find the Fourier transform of  $f(x) = \begin{cases} 1 - x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$ 

Hence evaluate:  $\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^{3}} \cdot \cos \frac{x}{2} dx$  (06 Marks)

b. Find the z-transform of  $\cosh n\theta$ .

(04 Marks) (06 Marks)

c. Solve the difference equation  $y_{n+2} + 4y_{n+1} + 3y_n = 3^n$  given y(0) = 0, y(1) = 1.

Module-3

5 a. Fit a second degree parabola in the form  $y = a + bx + cx^2$  to the following data:

| X | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 |
|---|-----|-----|-----|-----|-----|-----|-----|
| у | 1.1 | 1.3 | 1.6 | 2.0 | 2.7 | 3.4 | 4.1 |

(06 Marks)

b. If  $\theta$  is the angle between the two regression lines show that :

$$\tan \theta = \frac{1 - r^2}{r} \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma y^2}$$

Explain the significance when r = 0 and  $r = \pm 1$ .

(05 Marks)

c. Compute the real root of  $x \log_{10} x - 1.2 = 0$  by the method of false position. Carry out 3 iterations. (05 Marks)

OR

a. If P is the pull required to lift a load W by means of a pulley block, find a linear law of the form P = m w + c connecting P and W, using the data:

| P | 12 | 15 | 21  | 25  |
|---|----|----|-----|-----|
| W | 50 | 70 | 100 | 120 |

(05 Marks)

b. Obtain the lines of regression and hence find the coefficient of correlation for the data:

| JI ICEI | CBBIOII G | illa lioli | oo mia | He ecel | Brown |    |    |
|---------|-----------|------------|--------|---------|-------|----|----|
| X       | 1         | 4 2        | 3      | 4       | 5     | 6  | 7  |
| y       | 9 (       | -8         | 10     | 12      | 11    | 13 | 14 |

(06 Marks)

c. Use Newton – Raphson method to find a real root of  $x \sin x + \cos x = 0$  near  $x = \pi$ . Carry out three iterations. (05 Marks)

Module-4

7 a. The following data gives the values of  $\tan x$  for  $0.10 \le x \le 0.30$ . Find  $\tan (0.26)$  by using Newton's backward formula:

| X     | 0.10   | 0.15   | 0.20   | 0.25   | 0.30   |
|-------|--------|--------|--------|--------|--------|
| tan x | 0.1003 | 0.1511 | 0.2027 | 0.2553 | 0.3093 |

(06 Marks)

b. Use Lagranges interpolation for  $\underline{\text{mula to find } y}$  at x = 10 given :

|   |    | 2  |    | _  |
|---|----|----|----|----|
| X | 5  | 6  | 9  | 11 |
| У | 12 | 13 | 14 | 16 |

(05 Marks)

c. Use Simpson's  $\frac{1}{3}^{rd}$  rule with 7 ordinates to evaluate :  $\int_{2}^{8} \frac{dx}{\log_{10} x}$ . (05 Marks)

#### OR

8 a. Given f(40) = 184, f(50) = 204, f(60) = 226, f(70) = 250, f(80) = 276, f(90) = 304, find f(85) using Newton's backward interpolation formula. (05 Marks)

b. Find f(2) using Newton's divided difference formula given the values :

| X    | 0  | 1   | . 4  | 8   | 10  |
|------|----|-----|------|-----|-----|
| f(x) | -5 | -14 | -125 | -21 | 355 |

(06 Marks)

c. Evaluate  $\int_{0}^{1} \frac{x dx}{1+x^2}$  by Weddle's rule taking seven ordinates.

(05 Marks)

### Module-5

- 9 a. Verify Green's theorem for  $\int_C (xy+y^2)dx + x^2dy$  where C is the bounded by y=x and  $y=x^2$ .
  - b. Verify Stoke's theorem for  $\overrightarrow{F} = (2x y)i yz^2j y^2zk$ , where S is the upper half surface of the sphere  $x^2 + y^2 + z^2 = 1$ , c is its boundary. (05 Marks)
  - c. Find the extremal of the functional  $I = \int_{0}^{\pi/2} (y^2 y'^2 2y \sin x) dx$  under the end conditions:

$$y(0) = y\left(\frac{\pi}{2}\right) = 0. \tag{05 Marks}$$

#### OR

10 a. If  $\vec{F} = 2xyz' + yz^2j + xzk$  and s is the rectangular parallelepiped bounded by x = 0, y = 0, z = 0. Evaluate  $\int \int \int div \vec{f} dv$ . (06 Marks)

b. Solve the variational problem:

$$\delta \int_{0}^{\pi/2} (y^2 - y'^2) dx = 0; y(0) = 0 \ y(\pi/2) = 2.$$
 (05 Marks)

c. Find the geodesics on a surface given that the arc length on the surface is

$$S = \int_{x_1}^{x_2} \sqrt{x(1+{y'}^2)} dx .$$
 (05 Marks)

\* \* \* \* \*