

CBCS SCHEME

21MAT41

Fourth Semester B.E. Degree Examination, June/July 2023 Complex Analysis, Probability and Statistical Methods

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. Use of Statistical table is permitted.

Module-1

- 1 a. Derive Cauchy Riemann equations in Cartesian form. (06 Marks)
 - b. Show that $f(z) = \sin z$ is analytic and hence find its derivative. (07 Marks)
 - c. Evaluate $\int_{(0,3)}^{(2y+x^2)} (2y+x^2) dx + (3y-x) dy$, along the parabola x = 2t, $y = t^2 + 3$ (07 Marks)

OR

2 a. Determine the analytic function f(z) = u + iv, whose imaginary part is

$$(x^2 - y^2) + \frac{x}{x^2 + y^2}$$
 by Milne – Thompson method. (06 Marks)

- b. State and prove Cauchy's integral theorm. (07 Marks)
- c. Evaluate $\int_{c} \frac{dz}{z^2 4}$ over c : |z| = 1 (07 Marks)

Module-2

- 3 a. Show that $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$ (06 Marks)
 - b. If α and β are the two roots of $J_n(x) = 0$ then prove that $\int_0^1 x \ J_n(\alpha x) J_n(\beta x) dx = 0$ if $\alpha \neq \beta$.
 - c. Express $f(x) = 2x^3 x^2 3x + 2$ in terms of Legendre polynomials. (07 Marks)

OR

- 4 a. Obtain the series solution of Bessel's differential equation $x^2y'' + xy' + (x^2 + n^2)y = 0$ leading to $J_n(x)$. (06 Marks)
 - b. Show that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$ (07 Marks)
 - c. Prove that, $x^3 + 2x^2 4x + 5 = \frac{2}{5}P_3(x) + \frac{4}{3}P_2(x) \frac{17}{5}P_1(x) + \frac{17}{5}P_0(x)$ (07 Marks)

Module-3

5 a. Find the Karl Pearson's coefficient correlation for the following two groups.

A	92	89	87	86	83	77	71	63	53	50
В	86	83	91	77	68	85	52	82	37	57

(06 Marks)

21MAT41

b. Fit a straight line of the form y = ax + b for the data by the least squares method.

Х	0	1	2	3	4	5
у	9	8	24	28	26	20

(07 Marks)

c. Using the method of least squares fit a curve $y = ax^b$ for the data

X	1	2	3	4	5
у	0.5	2	4.5	8	12.5

(07 Marks)

OR

6 a. Ten students got the percentage of marks in two subjects x and y. Compute their rank correlation coefficient.

contration co	OILLO	I OTIVO	A 70							
Marks in x	78	36	98	25	75	82	90	62	65	39
Marks in y	84	51	91	60	68	62	86	58	53	37

(07 Marks)

b. Compute the means x, y and the coefficient of correlation r from the given regression lines 2x + 3y + 1 = 0, x + 6y - 4 = 0. (07 Marks)

c. Fit a second degree parabola $y = ax^2 + bx + c$ in the least square sense for the following data and hence estimate y at x = 6.

X	1	2	3	4	5
у	10	12	13	16	19

(06 Marks)

Module-4

7 a. A random variable X has the following probability function:

A landom	variable 7	mas are n	one wing h	Hoodoring		T / -		
X	0 .	1	2	3	4	5	6	/
P(X)	0 🐴	k	2k	2k	3k	k^2	$2k^2$	$7k^2 + k$

Find k and evaluate $P(X \ge 6)$, $P(3 \le X \le 6)$.

(06 Marks)

b. Find the mean and standard deviation of Poisson distribution.

(07 Marks)

c. The probability that a person aged 60 years will live upto 70 is 0.65. What is the probability that out of 10 persons aged 60 at least 7 of them will live upto 70? (07 Marks)

OR

8 a. Find a constant K such that

$$f(x) = \begin{cases} kx^2, & 0 \le x \le 3 \\ 0, & \text{otherwise} \end{cases}$$
 is a pdf.

Also, compute: (i) $P(1 \le x \le 2)$

(ii) $P(x \le 1)$

(iii) P(x > 1)

(06 Marks)

b. Find the mean and standard deviation of Binomial distribution.

(07 Marks)

c. In a test of electric bulbs it was found that the lifetime of bulbs of a particular brand was normally distributed with an average life of 2000 hours and standard deviation of 60 hours. If a firm purchases 2500 bulbs, find the number of bulbs that are likely to last for

- (i) More than 2100 hours
- (ii) Less than 1950 hours
- (iii) Between 1900 and 2100 hours

Given that, $\phi(1.67) = 0.4525$; $\phi(0.83) = 0.2967$

(07 Marks)

Module-5

The joint probability distribution of the random variables X and Y are given as follows:

oution or t	iio iaiiaoii.	· variables	11 and 1
X	1	3	9
2	$\frac{1}{8}$	24	1/12
4	1/4	$\frac{1}{4}$	0
6	$\frac{1}{8}$	$\frac{1}{24}$	$\frac{1}{12}$

Find (i) E(X)

(ii) E(Y) (iii) E(XY)

(iv) Cov(X, Y)

(v) Marginal distribution of X and Y

(06 Marks)

Define (i) Null hypothesis (ii) Type-I and Type-II error

(iii) Level of Significance

A sample of 100 tyres is taken from a lot. The mean life of tyres is found to be 40,650 kms with a standard deviation of 3260. Can it be considered as a true random sample from a population with mean life of 40,000 kms (use 0.05 level of significance). (Given $z_{0.05} = 1.96$, $z_{0.01} = 2.58$ (07 Marks)

The joint probability distribution of two random variables X and Y are as follows:

X	-2	-1	5
14	0.1	0.2	0 0.3
2	0.2	0.1	.1 0

Determine: (i) Marginal distribution of X and Y

(ii) Find E(X), E(Y) and E(XY)

(iii) Covariance of X and Y

b. In the experiment of pea breeding the following frequencies of seeds were obtained.

	The production	many and reme	8 - 1 - 1	100 01 00 7 00	
-	Round and	Wrinkled and	Rounded	Wrinkled	Total
	Yellow	Yellow	Green	and Green	
	315	101	108	32	556

Theory predicts that the frequencies should be in proportions 9:3:3:1. Examine the correspondence between theory and experiment. (Given $\chi_{0.05}^2 = 7.815$ for 3df).

c. A group of 10 boys fed on a diet A and another group of 8 boys fed on a different diet B for a period of 6 months recorded the following increase in weight (lbs).

Die	tA:	5	6 8	1	12	4	3	9	6	10
Die	tB:	2	3 6	8	10	1	2	8	5	5

Test whether diets A and B differ significantly regarding their effect on increase in weight. (Given $t_{0.05}$ for 16 df = 2.12)