CBCS SCHEME

21MATCS41

Fourth Semester B.E. Degree Examination, June/July 2023 athematical Foundations for Computing, Probability and

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define tautology. Determine whether the following compound statement is a tautology or not: $\{(p \lor q) \to r\} \leftrightarrow \{\neg r \to \neg (p \lor q)\}$ (06 Marks)
 - b. Determine whether the following argument is valid of not: No engineering student of I & II semester studies logic

Anil is an engineering student who studies logic

.. Anil is not in II semester.

c. Give direct proof and proof by contradiction for the statement "If n is an odd integer then n + 9 is an even integer." (07 Marks)

Prove that the argument given below is a valid argumen

(06 Marks)

(07 Marks)

$$p \to (q \to r)$$

$$\sim q \to \sim p$$

$$p$$

$$\therefore r$$

- b. Prove that $[\sim p \land (\sim q \land r)] \lor [(q \land r) \lor (p \land r)] \Leftrightarrow r$ by using laws of logic. (07 Marks)
- c. Give a direct proof for each of the following, For all integers K and L, if K and L are both even, then (i) K + l is even (ii) K l is even (07 Marks)

a. Consider $f: R \to R$ defined by f(x) = 2x + 5 and $g: R \to R$ defined by $g(x) = \frac{1}{2}(x - 5)$.

Prove that g is an inverse of f. (06 Marks) b. Let $A = \{1, 2, 3, 4, 6\}$ and R be a relation on A defined by aRb if and only if "a is a multiple

- of b". Write down the relation R, relation matrix M(R) and draw its diagram. (07 Marks)
- c. Define: (i) Simple graph (ii) Complete graph (iii) Subgraph (iv) Spanning subgroup (07 Marks)

- Let f and g be functions from R to R defined by f(x) = ax + b and $g(x) = 1 x + x^2$, if $(g \circ f)(x) = 9x^2 - 9x + 3$, determine a and b. (06 Marks)
 - b. Let $A = \{1, 2, 3, 4\}$, $R = \{(1, 3), (1, 1), (3, 1), (1, 2), (3, 3), (4, 4)\}$ be a relation on A. Determine whether the relation R is reflective, symmetric, anti-symmetric or transitive. Hence verify R is an equivalence relation or not. (07 Marks)

c. Define isomorphism of graph. Find whether the following graphs are isomorphic or not.

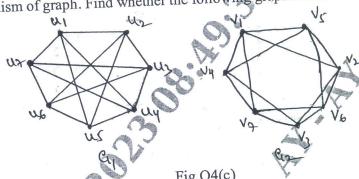


Fig.Q4(c)

(07 Marks)

Module-3

a. Fit a second degree parabola $y = a + bx + cx^2$ in the least square sense for the following data:

u	a.		4	_	4
	X	0	1 2	3	4
	y	1	1.8 1.3	2.5	2.3

(06 Marks)

Obtain the lines of regression and hence find the coefficient of correlation for the data:

Las	T di	2	3	4	5	6	74
X	1	8	10	12	11	13	14
1 y	7	0	10	12			

(07 Marks)

and statistics (v) of nine students. The following are the percentage of marks in matrix alculate the rank correlation coefficient

C	alcula	ate th	e ran	k co	rrelation	coem	cien	l.	
	37	38		42		55	67	46	12
8	X	41	61	70	75 44	55	62	56	60
	У	41	04	70		100			1

(07 Marks)

Fit a least square geometric curve $y = ax^b$ for the data

It at I	Cube Da	400	0		
X	(In	2	3	4	5
V	0.5	2	4.5	8	12.5
1	1				/ The last

(06 Marks)

b. Given the equation of the regression lines x = 19.13 - 0.874, y = 11.64 - 0.5x. Compute the mean of x, y and the coefficient of correlation.

c. Three judges A, B, C, give the following ranks. Find which pair of judges has common

approa	cn.		AP				10	-	0
Δ	1	6 5	10	3	2	4	9	1	8
D	3	5 8	4	7	10	2	1/	6	9
C	6	1 0	8	1	2	3	10	5	7
	0	4		_	-	-			

(07 Marks)

Module-4

A random variable x has the following probability distribution:

			A		-	-	7
v	0	1	2 3	4	5	0	/
D()	0	17	OV 3K	3K	K^2	$2K^2$	$7K^2+K$
P(x)	U	N	ZI	JIL	12		

(i) Find K (ii) Find
$$P(x < 6)$$
 $P(x \ge 6)$ and $P(3 < x \le 6)$

(06 Marks)

b. Derive the mean and standard deviation of binomial distribution.

(07 Marks)

- c. In a test on electric bulbs, it was found that the life time of a particular brand was distributed normally with an average life of 2000 hours and SD of 60 hours. If a firm purchases 2500 bulbs, find the number of bulbs that are likely to last for (i) more than 2100 hours (iii) between 1900 to 2100 hours. A(1.67) = 0.4525, (ii) less than 1950 hours (07 Marks) A(0.83) = 0.2967, A(1.67) = 0.4525.
- In a quiz contest of answering 'Yes' or 'No', what is the probability of guessing atleast 6 answers correctly out of 10 questions asked? Also find the probability of the same if there are 4 options for a correct answer?

b. The number of accidents in a year to taxi drivers in a city follows a Poisson distribution with mean 3. Out of 1000 taxi drivers find approximately the number of the drivers with: (07 Marks)

(i) no accident in a year (ii) more than 3 accidents in a year. In a normal distribution 31% of the items are under 45 and 8% of the items are over 64. Find the mean and S.D. of the distribution. A(0.5) = 0.1915, A(1.4) = 0.4192.

<u>Module</u>

The joint distribution of two random variables x and y as follows:

Y	-4	2	7
1	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$
2	$\frac{1}{4}$	$\frac{1}{8}$	1 × 8

(06 Marks) Find: E(X), E(Y) and E(XY) (ii) cov(X, Y) (iii) $\rho(X, Y)$ A die is thrown 9000 times and a throw of 3 or 4 was observed 3240 times. Show that the

die cannot be regarded as an unbiased one.

c. A certain stimulux administered to each of the 12 patients resulted in the following changes of blood pressure: 5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0, 4. Can it be concluded that the stimulus will increase the blood pressure, (t_{0.05} = 2.201 for 11 d.f)

- 10 a. A fair coin is tossed thrice. The random variables X and Y are defined as follows: X = 0 or 1 according as head or tail occurs in first toss.
 - ¥ Number of heads.
 - Determine the distribution of X and Y.

(06 Marks) (ii) Determine the joint distribution of X and Y.

Explain: (i) Null hypothesis (ii) Significance level (iii) Type I and Type II Errors

Five dice were thrown 96 times and the numbers 1, 2 or 3 appearing on the face of the dice

follows the frequency distribution as below: Number of dice showing 1, 2 or 3 19 | 35

Test the hypothesis that the data follows a binomial distribution. ($\chi^2_{0.05} = 11.07$ for 5 d.f.) (07 Marks)