GBCS SCHEME

				molt di di di manda		
USN					17	7ME652
Sixth Semester B.E. Degree Examination, June/July 2023 Mechanics of Composite Materials						
Tin	ne. 3	3 hrs.	8		Max. Ma	rks: 100
1 111				ONE full assertion	from each mod	lula
Note: Answer any FIVE full questions, choosing ONE full question from each module.						
			Module-1	· c	-:tti-1a	(10 Mayles)
1	a. b.	Define Composite Material. Giv Discuss the application of poly sectors.	mer matrix com	posites in Aircraf	t, Automobile a	and Sports (10 Marks)
			OR			
2		Explain with neat sketches:		*		
	a.	Hand Layup Technique	A			
	b.	Injection Moulding				(20 Marks)
	C.	Filament Winding				(20 Marks)
Module-2						
3	a.	Derive an expression for Longi	itudinal Young's		nsverse Young'	s modulus
		for a unidirectional lamina by u		ture.	4	(10 Marks)
	b.	Discuss with the expression the	effects of			
		i) Volume fractionii) Density fraction			Zin -	
		iii) Mass fraction		>	4	(10 Marks)
					pa-	
			OR	C1 1	tian Determine	
4	a.	The Glass/Epoxy lamina is deve i) Longitudinal Young's modu		nber volume frac	tion. Determine	
		ii) Transverse Young's modulu		And the second		
		iii) Inplane Shear modulus				
		Consider the properties of glass	fibers as E _{glass} =	85 GPa, $\mu_{glass} = 0$	$.2 , G_{glass} = 35.4$	12 GPa
		and Epoxy is $E_{epoxy} = 3.4$ GPa,	$\mu_{\text{epoxy}} = 0.3$, G_{ep}	$p_{\text{oxy}} = 1.3 \text{ GPa}$		(10 Marks)
		Explain the following:	I and tunnafor is	narticulate compo	scite	
		i) Transverse stressesiii) Fiber elastic matrix plastic a	*	particulate compo	isite	(10 Marks
		III) Floer elastic matrix plastic a	and Tiber clastic	matrix oraștio.		(======================================
			Module-3			
5	a.	Derive the engineering constan	t for an angle lan	nina.	1 1 .: 00	(10 Marks
	b.	<u> </u>		$\mu = 0.25$. Determi	ne reduced stiffi	ness matrix (10 Marks
		and reduced compliance matrix	L.			(IU Maiks
OR						
6	a.	Write the reduced stiffness mat		compliance matrix	for an isotropic	lamina.

Explain Interlaminar stress and Edge effects.

(10 Marks)

(10 Marks)

Module-4

- Write short notes on:
- ii) Debonding
- iii) Delamination in composites.
- (10 Marks)
- b. Explain Tensile Strength and Compressive strength of unidirectional fiber composites.

(10 Marks)

- Explain the following: 8
 - a. Maximum Stress Failure Theory
 - b. Maximum Strain Failure Theory
 - Tsai Hill Failure Theory
 - d. Tsai Wu Failure Theory

(20 Marks)

Module-5

- Explain with representation the laminate codes for: 9
 - Symmetric Laminate
 - Angle-Ply Laminate
 - Balanced Laminate
 - d. Cross-Ply Laminate

(20 Marks)

Explain failure criterion for a laminate. 10 a.

- (10 Marks)
- What are the types of laminate given below? Mention which elements of [A], [B], [D] are zero for each one of them:
 - i) [±45°/±45°]
 - ii) [+30° / -45° / -30° / +45°
 - iii) [$\pm\theta$]
 - iv) [0° / 45° / 90° /

(10 Marks)