

I Semester M.C.A. Degree Examination, June/July - 2023

COMPUTER SCIENCE

Computer Organization and Architecture (CBCS Y2k20 Scheme)

Paper: IMCA3

		e: 3 Hours ructions to Candidates:	Maximum Marks: 70			
		Answer any Five quesrions from Part - A Answer any Four questions from Part - B				
,						
•		PART - A	(5×6=30)			
11		Answer any Five questions.				
		Explain Von-Nuemann Architecture with a neat diagram				
2		Differential between RISC and CISC.	(6)			
. 3		Subtract 24 ₍₁₀₎ from 14 ₍₁₀₎ Using 2's Complement Meth	hod. (6)			
4.		xplain Error Detector Using Hamming Code.	(6)			
5.		xplain addressing models and its types.	(6)			
6.	Ex	xplain the working of half adder and full adder, with a	a neat circuit diagram. (6)			
7.		plain Instruction Level Parallelism.	(6)			
8.	Ex	plain Virtual Memory.	(6)			
			(0)			
		PART - B				
	A DEVILOR OFFILE CHICATIONS					
9.	a)	Simplify:	$(4 \times 10 = 40)$			
		$F(A,B,C,D)=\sum m(0,1,2,3,4,5)+d(10,11,12,13)$ in	SOP minimal form (5)			
	b)	Analyse booth multiplication algorithm with flow ch with an example.	nart, hardware implementation			
10.	a)	Explain Arithmetic Logic shift unit.	(5)			
A ()			(5)			
	b)	Explain the different registers in basic computer.	(5)			
			[P.T.O.			
			[1.1.0.			

		(2)	62453
	E E E E E E E E E E E E E E E E E E E		(5)
11.	a)	Explain Interrupt cycle with flow chart.	(5)
	b)	Explain different types of ROMs.	
12.	a)	Explain the working of DMA data transfer with a neat block diagram	. (5)
	b)	Explain different instruction formats with an example for each.	(5)
13.	ĺ	What is memory mapped I/o and Program controlled I/O.	(5)
15.	,	· Explain binary counter.	(5)
14.	Wri	te short note on:	
	a)	MIMD Architecture	(5)
	b)	Inter Process communication.	(5)

		Ш	
 BINE I	MI BIET	4114	114 1841

EO	FGRADU	476
18.57	3RAR	V OT DE
THAT'S	My contractor	
13.		(3)

Reg. No.	,			

I Semester M.A. Degree Examination, July - 2022

COMPUTER SCIENCE

Computer Organization and Architecture

(CBCS 20-21 Scheme)

Paper: 1MCA3

Time: 3 Hours

Maximum Marks: 70

62453

Instruction to Candidates:

- 1) Answer any Five questions from Section A, each carries Six marks.
- 2) Any Four questions from Section B, each carries Ten marks.

SECTION - A

- L Answer any FIVE of the following questions. Each carries 6 marks. $(5\times6=30)$
 - 1. Convert (FADE)₁₆ into decimal, octal and binary number system.
 - 2. With a neat diagram explain Von-Neuman architecture.
 - 3. Subtract 73₍₁₀₎ from 28₍₁₀₎ using 2's complement method.
 - 4. Explain the different instruction formats.
 - 5. Write a note on RISC and CISC.
 - 6. Explain instruction level parallelism and its limitations.
 - 7. Explain the characteristics of multiprocessor.
 - 8. Explain virtual memory.

SECTION - B

II. Answer any Four Full questions.

 $(4 \times 10 = 40)$

- 9. a) With a neat circuit diagram and truth table, explain the working of full adder. (5)
- b) Simplify $F(ABCD) = \sum m(1,2,6,11,15) + \sum d(0,3,9,10,14)$ using k map and write the circuit diagram for the simplified expression. (5)

P.T.O.

10.	a)	Explain error detection using Hamming code.	(5)
	b) 1	Explain binary counter.	(5)
11.	a)	With a neat circuit diagram explain the working of JK flip flop.	(5)
	b)	Explain interrupt cycle with a neat flow chart.	(5)
12.	a)	Explain memory reference instruction and register reference instruction with an example.	ction (5)
	b)	What is memory-mapped I/o and program controlled I/o.	(5)
13.	a)	Define addressing mode and explain any 4 addressing mode.	(5)
	b)	Explain the block diagram of DMA Controller.	(5)
	•		
14.	a)	Explain MIMD architecture.	(5)
	b)	What is inter process communication? Explain shared memory metho process communication.	d of (5)

62453