

II Semester M.Sc. Degree Examination, November - 2022

CHEMISTRY

Molecular Spectroscopy-I (CBCS Scheme 2019-20)

Paper: Ch - 204

Time: 3 Hours

Maximum Marks: 70

Instructions to Candidates:

Answer question No.1 and any Five of the remaining questions. Figures to the right indicate marks.

Answer any Ten of the following.

 $(10 \times 2 = 20)$

- 1. a) Define the term "point group" and find the point group of tetrahedral CH₃Cl Molecule.
 - b) What do the Mulliken symbols B_{1g} and A_{2u} signify?
 - c) List the sub-group of D_{3h} point group. Give the order of each sub-group.
 - d) Acetylene has the two following C-H vibrations, a symmetrical one at 3287 cm⁻¹ and unsymmetrical one at 3374 cm⁻¹, $\overline{H-C} = \overline{C-H}$ and $\overline{H-C} = \overline{C-H}$. Which of the vibration will be Raman active? Why?
 - e) Calculate the number of normal modes of vibrations of, N₂O and CO₂ molecules.
 - f) Calculate force constant for a harmonic spring exhibiting vibrational frequency of $10s^{-1}$ for a mass of 1kg.
 - g) CO₂ does not show its pure rotational spectrum but does show rotation-vibration spectrum. Give reasons.
 - h) How rotational energy of linear molecule differs from that of symmetric top molecule? Explain.
 - i) The spacing between successive lines in the rotational Raman spectrum of a diatomic molecule is 12 cm⁻¹. What is the Raman shift of the first stokes line?
 - j) With the help of Jablonski diagram indicate the transitions responsible for fluorescence and phosphorescence.
 - k) Write the electronic structure of O₂ and calculate the bond order.

P.T.O

- State and explain Born-Oppenheimer approximation. l)
- List the diagnostic symmetry elements and determine the point group symmetries a) 2. of the following molecules:
 - C₃H₄(allene) i)
 - BF, ii)
 - $[PtCl_{\lambda}]^{2}$ iii)
 - CH2Cl2 and iv)
 - V) C_2H_4

(5+5=10)

- Construct the Multiplication table for the symmetry operations of ammonia b) molecule.
- Deduce the matrix representation for rotation of a vector with respect to Z-axis and 3. a) evaluate the matrix for C₂ and C₃ operations. (6+4=10)
 - b) Show that two σ_{ν} - operations of $C_{2\nu}$ point group are non-conjugate while that of three σ_{ν} Operations of $C_{3\nu}$ are conjugate.
- Derive an expression for the spectral frequency for vibration-rotation spectra of 4. a) diatomic molecules. Comment on the effect of interaction between vibration and rotational energies on rotational lines. (4+6=10)
 - b) Write brief notes on.
 - Parallel and perpendicular vibrations. i)
 - ii) Time dependent perturbation theory.
- H35Cl has a B value of 10.593 cm⁻¹ and a centrifugal distortion constant of 5. a) 5.3 ×10⁻⁴ cm⁻¹. Estimate the vibrational frequency and force constant of the molecule.
 - (5+5=10)Depict the normal modes of XY₂ linear and non-linear type molecules and explain b) their IR activity.
- Calculate the rotational energy of ¹⁴N¹⁶O corresponding to J=1 level in joules and in 6. a) cm⁻¹. Assuming it to be rigid rotator (Given atomic masses of ¹⁶O=15.9994 amu and ¹⁴N=14.004 amu and the bond length is 115 pm). (4+6=10)

enth.

(3)

61914

- Write short notes on:
 - i) Q-branch in vibration-rotation spectra and
 - ii) FT-IR spectrometer.
- How do you account for the difference in intensities of Stokes and anti-Stokes lines 7. a) from quantum theory of Raman spectra? (4+6=10)
 - Explain how IR and Raman spectrum of molecules are complementary to each other. b) With an illustrative example discuss their combined application in structural elucidation.
- Explain the importance of Frank-Condon principle for explaining the intensities of 8. a) vibrational structure. (5+5=10)
 - Write the molecular orbital diagram of formaldehyde molecule and explain the b) possible electronic transitions involved in it.

