Reg. No.				

II Semester M.Sc. Degree Examination, November - 2022

(CBCS 2014-15 Onwards Scheme Repeaters)

CHEMISTRY

Spectroscopy - I

Paper: C 204

Time: 3 Hours

Maximum Marks: 70

Instruction to Candidates: Answer question No. 1 and ANY FIVE of the remaining questions Figures to the right indicate marks.

Answer any TEN of the following

 $(10 \times 2 = 20)$

- 1. a) A molecule with more than one C_n -axis (n > 1) cannot have a dipole moment. Give reason.
 - b) Define the term "point group" and find the point group of tetrahedral CH₃Cl molecule.
 - c) List all the elements of the cyclic group generated by S₃ improper axis of rotation. What is the Schoenflies symbol for this point group?
 - d) Rotation about the bond axis of linear molecules is not responsible for absorption peak. Justify the statement.
 - e) Write the expression for rotational energy of rigid and non-rigid linear molecule and explain the terms involved.
 - f) What are hot bands? Mention the condition for their occurrence.
 - g) Calculate the normal modes of vibrations of N₂O and C₂H₂. Predict their IR activity.
 - h) The spacing between successive lines in the rotational Raman spectrum of a diatomic molecule is 36 cm⁻¹. What is the Raman shift of the first Stokes line?
 - i) Define the term polarisability and draw the polarisability ellipsoid for $\rm H_2O$ molecule.
 - j) The energy of each orbital varies considerably from atom to atom. Give reasons.
 - k) Distinguish between radioactive and non-radioactive decay.
 - 1) How σ -and π molecular orbitals are formed? Explain.

P.T.O.

(2)

- 2. a) List the complete set of operations included in the point group D_{4h} . Find all the subgroups of D_{4h} .
 - b) Write a note on labelling of irreducible representation. (5+5=10)
- 3. a) Explain the terms axis of symmetry, centre of symmetry and rotation-reflection axis with examples.
 - b) Construct the multiplication table for the symmetry operations of ammonia molecule. (6+4=10)
- 4. (a) Obtain the expression for the energy of a diatomic molecule assuming it to be an anharmonic oscillator. Draw the energy level diagram and give the selection rules.
 - b) Discuss the application of Stark effect in microwave spectroscopy for the determination of dipole moment of linear molecules. (5+5=10)
- 5. a) $H^{35}C1$ has a B value of 10.593 cm⁻¹ and a centrifugal distortion constant of 5.3×10^{-4} cm⁻¹. Estimate the vibrational frequency and force constant of the molecule.
 - b) Write brief notes on
 - i) Born-Oppenheimer approximation and
 - ii) Q branch in vibrational-rotational spectra of diatomic molecules. (4+6=10)
- 6. a) Sketch the normal modes of vibration for a linear and non-linear triatomic molecule. Discuss their IR and Raman activity.
 - b) Derive the expression for the Raman shifts of the pure rotational- Raman lines of a linear molecule. (6+4=10)
- 7. a) With the help of Jablonski diagram illustrate the various photochemical pathways for the decay of excited states.
 - b) State the Frank-Condon principle. How does it help in explaining the intensities of vibrational structure? (5+5=10)
- 8. a) Write the molecular orbital diagram of formaldehyde molecule and explain the possible electronic transitions involved in it.
 - b) A diatomic molecule AB and its excited state (AB)* have the same equilibrium bond length. Draw a schematic plot of its vibrational course structure. (6+4=10)

