

Reg. No.							

III Semester M.Sc. Degree Examination, April/May - 2022

್ರಗಯು.

CHEMISTRY

Organic Spectroscopy

(CBCS Scheme 2019-2020)

Paper: CH - 303 IC/OC/PC

LIBRARY Maximum Marks: 70

OF GRA

Time: 3 Hours

Instructions to Candidates:

- 1. Answer question No. 1 and any five of the remaining
- 2. Figures to the right indicate marks.
- 1. Answer any Ten of the following.

 $(10 \times 2 = 20)$

- a. Sketch the MO diagram of benzene. Name and indicate the positions, of its UV bands.
- b. Oultine the Nujol mull technique for recording IR spectra.
 - c. Carbonyl compounds are sensitive to changes of solvent in UV/IR spectra why?
 - d. Indicate why TMS is the internal standard of choice in ¹H NMR spectroscopy.
 - e. Assign pople's notation for the following spin systems:
 - i. CH₃CHO and

ii. U-(0)-NO2

- f. How are first order ¹H NMR speactra differentiated from higher order ¹H NMR spectra?
- g. State and explain Audier Stevenson rule.
- h. Deduce the expression for separation of ions in an ICR MS instrument.
- i. Illustrate NOE with suitable example.
- j. How are the formation of free radical intermediates recognized by dynamic ¹H NMR spectroscopy?
- k. Give the composition of a matrix. Highlight its importance in the MALDI technique for formation of molecular ions.

P.T.O.

not

110

30

Assign the ¹³CNMR chemical shift values for the methylene protons (A),(B) and (C). 1.

$$R - CH_2 - C - O - CH_2 - CH_2 - R$$
(A) (B) (C)

- S:68.9
- ii. $\mathcal{S}: 26.4$ and
- $\mathcal{S}: 22.7 \text{ ppm}.$

Outline the empirical rules to predict the λ_{max} of aromatic carbonyl compounds. 2. a.

Illustrate the usefulness of IR spectroscopy to distinguish the isomers b. 2-hydroxybenzaldehyde from 4 - hydroxybenzaldehyde.

c. Predict the λ_{max} for the following.

ii. and

(4+3+3=10)

Predict the prominent IR bands in the following sequence of transformations: 3. a.

Write an account of the complementarities of IR - and Raman spectroscopies. b.

Expalin the phenomena of NMR on the basis of quantum mechanical theory. c.

(4+3+3=10)

Give an account of the principle and instrumentation of an 7T-NMR instrument. a.

Write the karplus equation. Sketch the karplus curve and indicate its importance. b.

Deduce the structure of an organic compound from the following data:

 $Mol. form : C_6H_{12}O_2$.

¹H NMR: δ : 2.00 (s,2H), 0.84 (s, 9H), and 11.01 (s, 1H).

¹³C NMR: δ : 179.4, 48.2, 29.8 and 28.2.

(4+3+3=10)

Discuss any two methods for the simplification of complex NMR spectra. 5. a.

b. With the help of a neat diagram, indicate the anisotropic effects prevalent in alkenes.

A compound has molecular formula $C_{10}H_{14}$ and gave the following data: c.

 1 <u>HNMR</u>: S: 7.01 (s, 1H) and 2.20 (s, 6H).

¹³<u>C NMR</u>: δ : 133.0, 130.2 and 19.2

Deduce the structure of the molecule and assign the values.

(4+3+3=10)

State and explain the first order splitting rules of ¹H NMR. 6. a.

Citing suitable examples, illustrate the usefulness of DEPT. b.

Indicate the importance of nitrogen rule with suitable examples. c. (4+3+3=10)

Describe the quasi - equilibrium theory. . 7. a.

Write an account of the application of HRMS to determine the exact molecule formula b. of an organic compound.

Deduce the structure of an organic compound from the following data: c.

Mol. form : $C_{10}H_{12}O$

IR: 3019, 2987, 1718 and 1049 cm⁻¹

 1 HNMR: S: 7.30 to 7.19 (m, 5H), 2.85(t, 2H, J = 7Hz)

2.50 (t, 2H, J = 7 Hz) and

2.12 (s, 3H).

207.2, 141.8, 128.6, 126.7, 124.3, 45.0, 29.3 and 27.8. 13 CNMR: δ :

MS: 148 and 91 (base peak).

(3+3+4=10)

A compound has molecular formula $C_9H_6O_6$ and gave the following data: 8. a.

ATR - IR: 3500 - 2000, 1710 and 1259 cm⁻¹.

 1 H NMR: δ : 13.01 (s) and 8.76 (s)

¹³<u>CNMR</u>: δ : 165.9, 133.6, 132.0

 $MS: 210 \, (M^+) \, and \, 192 \, (base peak)$

Deduce the structure of the compound and assign the values

b.

¹⁹F - NMR spectroscopy. i.

ii. INADEQUATE.

iii. ESI - MS.

(4+6=10)