

Maria e a company	-45	11 -	3.0		21	
Dec Ma						
Reg. No.						

I Semester M.Sc. Degree Examination, June/July - 2022 MATHEMATICS

Mathematical Analysis

(CBCS Scheme 2018-19 and 2020 Onwards Y2k97 Repeaters)

Paper: M-107 SC

Instructions to Candidates:

- 1. Answer any **five** full questions.
- 2. All questions Carry equal marks.

- 1. a. Prove that $f: X \to Y$ be continuous function, where X and Y are metric space, iff $f^{-1}(V)$ is open in X, where V is open in Y.
 - b. Examine the function,

$$f(x) = \begin{cases} \frac{\cos x}{\pi/2 - x}, & x \neq \pi/2\\ 1, & x = \pi/2 \end{cases}$$

for continuity at $x = \pi/2$.

- c. Show that every differentiable function is continuous. But converse is need not be, justify with an example. (6+4+4)
- 2. a. Let $f: X \to Y$ be continuous mapping, when X is compact metric space, then show that f is uniformly continuous on X.
 - b. Show that continuous image of a connected set is connected.
 - c. Let f be a real uniformly continuous function on the bounded set A in \mathbb{R}' . (6+4+4)
- 3. a. State and prove mean value theorems.
 - b. Verify Lagrange's mean value theorem for the function f(x) = x(x-1)(x-2) in [0,1/2]. (9+5)

P.T.O.

- 4. a. Show that a sequence $\{a_n\}$ is bounded if and only if there exists a positive real number M such that $|a_n| \le M \ \forall n \in \mathbb{N}$.
 - b. Show that the sequence $\{a_n\}$ defined by $a_n = \left(1 + \frac{1}{n}\right)^n$ is covergent. (7+7)
- 5. a. Define upper limit and lower limit. Let $\{a_n\}$ is a bounded sequence, then show that the followings:

$$\lim_{n\to\infty} (-a_n) = \lim_{n\to\infty} a_n.$$

$$\lim_{n\to\infty} (-a_n) = \lim_{n\to\infty} a_n.$$

iii.
$$\overline{\lim}_{n\to\infty}(\lambda a_n) = \lambda \overline{\lim}_{n\to\infty} a_n, \ \lambda > 0$$

iv.
$$\frac{\lim_{n\to\infty} (\lambda a_n) = \lambda \frac{\lim_{n\to\infty} a_n}{\lambda}, \ \lambda > 0.$$

b. Show that every cauchy sequence is bounded.

(10+4)

- 6. a. Examine the convergence of the series $\frac{3}{5} + \frac{4}{5^2} + \frac{3}{5^3} + \frac{4}{5^4} + \dots$
 - b. State and prove D'Alembert's ratio test.
 - c. Let P>0, then show that $\lim_{n\to\infty} \sqrt[n]{P} = 1$. (4+6+4)
- 7. a. Show that e is irrational.
 - b. Let $\sum a_n$ is a series of complex numbers which converges absolutely, then show that rearrangement of $\sum a_n$ converges, and they all converges to the same sum.
 - c. State and prove Cesaro's limit theorem.

(4+5+5)

- 8. a. State and prove Bolzano weierstrass theorem.
 - b. State and prove Heine Borel theorem.
 - c. Prove that \mathbb{R}' is not compact.

(4+6+4)

