Dog Ma		- 1			
Reg. No.	1 1	- 1			
_					

LINA PARTITUM Marks: 70

III Semester M.Sc. Degree Examination, April/May - 2022 **MATHEMATIC**

Differential Geometry

(CBCS Scheme Repeater Y2K17)

Paper - M301 T

Time: 3 Hours

Instructions to Candidates:

Answer any Five questions. All questions carry Equal marks:

- 1. a) Define:
 - a tangent vector to E^3 i)
 - ii) a vector field on E^3
 - iii) Directional derivative in E^3

Further, if v = (2, -1, 3) and p = (2, 0, -3). Then compute the directional derivative $v_p[f]$ for the functions:

$$i) f = y^2 z$$

ii)
$$f = x^7$$

iii)
$$f = e^x \cos y$$

- Define a curve in E^3 . Let α be a curve in E^3 and let f be a differentiable function on b) E^3 . Then show that $\alpha^1(t)[f] = \frac{d(f(\alpha))}{dt}(t)$
- Let v = (1, 2-3) and p = (0, -2, 1). Evaluate the following 1-forms on the tangent c) vector up.

i)
$$y^2 dx$$

ii)
$$zdy - ydz$$

ii)
$$zdy - ydz$$
 iii) $(z^2-1) dx-dy+x^2dz$

(5+4+5)

- Let ϕ and ψ be two 1-forms. Then prove the Leibnizian formula 2. $: d(\phi \wedge \psi) = d\phi \wedge \psi - \phi \wedge d\psi.$
 - Let $F = (f_1, f_2,f_m)$ be a mapping from E^n to E^m . If ν is a tangent vector to E^n at p, b) then prove that $F_*(v)(v[f_1], v[f_2], \dots, v[f_m])$ at F(p).
 - For any three 1-forms $\phi_i = \sum_{j} f_i dx_j (1 \le i \le 3)$, Prove

$$\phi_{1} \wedge \phi_{2} \wedge \phi_{3} = \begin{vmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{vmatrix} dx_{1} dx_{2} dx_{3}$$

$$(6+4+4)$$

P.T.O.

- 3. a) If α is a regular curve in E^3 , then prove that there exists a reparametrization β of α such that β has unit speed. Further, show that a helix given by $\beta(s) = \left(a\cos\frac{s}{c}, a\sin\frac{s}{c}, b\frac{s}{c}\right), \text{ where } c^2 = \sqrt{a^2 + b^2} \& a > 0, \text{ has a unit speed.}$
 - b) If α is a regular curve with curvature function k > 0 and torsion function C, then show that α is a cylindrical helix if and only if the ratio c/k is constant.
 - c) If α is a regular curve in E^3 , then show that

$$T = \alpha' / \|\alpha'\|, \ N = B \times T, \ B = \alpha' \times \alpha'' / \|\alpha' \times \alpha''\|.$$

$$K = \|\alpha' \times \alpha''\| / \|\|\alpha'\|^3, \ C = (\alpha' \times \alpha'').\alpha''' / \|\alpha' \times \alpha''\|^2$$
(5+4+5)

- 4. a) Consider the tangent vector v = (1, -1, 2) at a point p = (1, 3, -1). computer $\nabla_v W_1$ where
 - $i) W = x^2 u_1 + y u_2$
 - ii) $W = xu_1 + x^2u_2 z^2u_3$.
 - b) If F is an isometry of E^3 such that F (o) = O, then show that F is an orthogonal transformation.
 - c) If $c = \begin{bmatrix} -\frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{bmatrix}$ and $\begin{cases} p = (3, 1, -6) \\ q = (1, 0, 3). \end{cases}$ show that C is orthogonal then compute c(p) and c(q). Further, check that c(p), c(q) = p.q. (4+5+5)
- 5. a) Let f be a real valued differentiable function on a non-empty open set D of E^2 , then prove that the function $X:D\to E^3$ defined by X(u,v)=(u,v,f(u,v)) is a proper patch in E^3 .
 - b) Let $X: E^2 \to E^3$ defined by X(u,v) = (u+v,u-v,x) show that X is a proper patch and that image of X is a surface M such that $z = \frac{x^2 y^2}{4}$, where (x,y,z)Ex (D) and $(u,v) \in D \le E^2$.
 - c) Show that every cylinder in E^3 is a surface in E^3 . (5+5+4)

- 6. a) Let X be a mapping from a non-empty open set D of E^2 to E^3 . The show that X is regular if and only if the x, v parameter partial derivatives $X_x(d)$ and $X_v(d)$ are linearly independent for all dED.
 - b) Let P be a point of a surface in E³ and X be a patch in M such that $X(v_o, v_o) = p$. prove a tangent vector v at a point P is tangent to M if and only if v can be written as a linear combination of $X_u(u_o, v_o)$ and $X_v(u_o, v_o)$. (7+7)
- 7. a) Let ϕ be a 1-form an a surface M. If X and Y are the patches in M defined on D and E respectively, then prove that $dx\phi = dy\phi$ on the overlap of x(D) and Y(E).
 - b) Let $F: M \to N$ be a mapping of surfaces and let ξ and η be forms on N. Then prove the following:

i)
$$F^*(\xi \wedge \eta) = F^*\xi \wedge F^*\eta$$

ii)
$$F^*(d\xi) = d(F^*\xi)$$
 (7+7)

- 8. a) Define a shape operator, for each point of a surface M in E³, Further, Show that the shape operator is a linear operator $Sp: Tp(m) \to Tp(m)$ on the tangent plane of M at a Point P.
 - b) With usual notation prove:

a)
$$K(x) = \frac{Ln - m^2}{EG - F^2}$$

b)
$$H(x) = \frac{Gl + En - 2Fm}{2(EG - F^2)}$$

c) Compute Gaussian Curvature K and mean Curvature H of helicoid $X(u,v) = (u\cos v, ufinv,bv), b \neq o.$ (5+5+4)

