Marks : 70

	المستدد	The Contract of	-	CONTRACTOR OF STREET	STATE OF THE PARTY OF	TOTAL WORK	pulca Spare	The state of the s
Reg. No.								

III Semester M.Sc. Degree Examination, April/May - 2022

MATHEMATICS

Functional Analysis

Paper: M-303 T

(CBCS Y2K17 Scheme)

(Rep)

Instructions to Candidates:

- i. Answer any FIVE full questions.
- ii. All questions carry Equal marks.

- 1. a. Define a normed linear space. Show that in a normed linear space following hold.
 - i. Norm is continuous.
 - ii. Addition and scalar multiplication is jointly continuous.
 - b. If M is a closed linear subspace of a normed linear space N, then prove that N/m is a normed linear space. Further, If N is a Banach space, then show that N/m is also Banach space.

 (6+8)
- 2. a. Prove that the linear space B(N, N') of all continuous linear transformations of N into N' is a Normed linear space, where $||T|| = Sup\{||Tx|| : ||x|| \le 1\}$, $\forall T \in B(N, N')$ further show that B(N, N') is complete where N' is complete.
 - b. Show that there is an isometric isomorphism of a normed linear space into its second dual. (8+6)
- 3. a. If N is a normed linear space and $x_0 \in N$ with $x_0 \neq 0$, then show that there exists $f_0 \in N^*$ such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$.
 - b. State the open mapping theorem prove the closed graph theorem. (6+8)
- 4. a. State and prove uniform boundedness theorem.
 - b. Show that the mapping $T \to T^*$ is an isometric isomorphism of B(N) into B(N*) which reverse the product and preserves the identity transformation, where T is an operator on N and T* an operator on N*. (7+7)

P.T.O.

- 5. a. Define a Hilbert space and show that every inner product space is a normed linear space.
 - b. Show that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm. (7+7)
- 6. a. Define orthonormal complement of a set S in a Hilbert space H. Prove the following:
 - i. $S \cap S^{\perp} \leq \{0\}$.
 - ii. $S_1 \leq S_2 \Rightarrow S_2^{\perp} \leq S_1^{\perp}$.
 - iii. S^{\perp} is a closed sub space of H.
 - iv. $S \subseteq S^{\perp \perp}$.
 - b. If $\{e_1, e_2, e_n\}$ is a finite orthonormal set in a Hilbert space H and $x \in H$, then prove that
 - i. $\sum_{i=1}^{n} |\langle x, e_i \rangle|^2 \le ||x||^2$.

ii.
$$x - \sum_{i=1}^{n} \langle x, e_i \rangle e_i \perp e_j \forall_j$$
. (8+6)

- 7. a. Define the conjugate space H* of a Hilbert space H. For every functional f on H, prove that there is a unique $y \in H$ such that $f(x) = \langle x, y \rangle \forall x \in H$.
 - b. Define self adjoint operators on H, prove that the set of all self adjoint operators in B(H) form a closed real linear space of H and contain I.
 - c. If N_1 and N_2 are normal operators on H with the property that either commutes with the adjoint of the other then prove that N_1+N_2 and N_1,N_2 are normal. (6+4+4)
- 8. a. Define unitary operator on H. Prove that T is unitary iff it is an isometric isomorphism of H onto itself.

b. State and prove spectral theorem. (6+8)

