

		7			
Reg. No.					
					ł

III Semester M.Sc. Degree Examination, April/May - 2022

MATHEMATICS

Linear Algebra

Paper: M-304 T

(CBCS Scheme Repeaters Y2K17) SE OF GRA

Maximum Marks: 70

Time: 3 Hours

Instructions to Candidates:

- i. Answer any **five** (5) full questions.
- /ii. All questions carry **equal** marks.
- 1. a. Define an algebra. Show that the set of all homomorphisms from V onto itself forms an algebra.
 - b. Define a minimal polynomial. If V is a finite dimensional vector space over F, then prove that $T \in A_F(V)$ is invertible if and only if the minimal polynomial of T is non-zero.
 - c. Define the rank of $T \in A_F(V)$. If V is finite dimensional over F, and for S, $T \in A_F(V)$ show that
 - i. $r(ST) \le r(T)$
 - ii. $r(TS) \le r(S)$.

iii.
$$r(TS) = r(ST) = r(T)$$
, for S regular in $A_F(V)$. (4+4+6)

- 2. a. If $\lambda_1, \lambda_2, \dots, \lambda_k$ in F are distinct characteristic roots of a linear transformation $T \in A_F(V)$ and if v_1, v_2, \dots, v_k are characteristic vector of T belonging to $\lambda_1, \lambda_2, \dots, \lambda_k$, respectively. Then prove that v_1, v_2, \dots, v_k are linearly independent over F.
 - b. Let V be the vector space of polynomials of degree 3 or less over F. In V define T by differential operator. Compute the matrix of T in the following bases.
 - i. $\{1, x, x^2, x^3\}$. Let this matrix be A.

[P.T.O.]

- $\{x^3, x^2, x, 1\}$. Let this matrix be B. ii.
- Find a matrix C such that B=CAC⁻¹.
- The element $\lambda \in F$ is a characteristic root of $T \in A_F(V)$ if and only if for some nonc. zero vector $v \in V$ then prove that $Tv = \lambda v$. (5+6+3)
- Let U,V, and W be finite dimensional vector space over F. Let T be a lineear 3. a. transformation from U to V and S be from V to W with respect to ordered bases B1,B, and B₃. If $A = [\alpha_{ij}]$, $B = [\beta_{ij}]$ and $C = [\gamma_{ij}]$ are matrices of T, S and TS respectively in the bases B_1B_2 , B_2B_3 and B_1B_3 respectively. Then prove the C = BA.
 - b. Define the change of coordinate matrix. Let $B = \{b_1, b_2\}$, $C = \{c_1, c_2\}$, be two bases with $b_1 = 4c_1 + c_2$; $b_2 = -6c_1 + c_2$. Suppose $x = 3b_1 + b_2$. Then final $[x]_C$.
 - c. Define a linear functional and dual basis. Let V be finite dimensional over F. Prove that there exists a unique dual basis for every basis of V. (5+4+5)
- 4. State and prove Cayley - Hamilton theorem. a.
 - b. Define a nilpotent transformation. If $T \in A_F(V)$ is nilpotent then prove that $\alpha_0 + \alpha_1 T + \dots + \alpha_m T^m$ is invertible if $\alpha_0 \neq 0$, where $\alpha_i \in F$.
 - Prove that a nilpotent linear transformation has unique set of invariants. c. (5+5+4)
- Define a basic Jordan block. Prove that two linear transformations are similar if and 5. a. only if they can be brought to the same Jordan canonical form.
 - Let $T \in A_F(V)$ has a minimal polynomial $p(x) = \gamma_0 + \gamma_1 x + \gamma_2 x^2 + \dots + \gamma_{r-1} x^{r-1} + x^r$ b. over F. Suppose that V is a module in a cyclic module relative to T. Then prove that there exists a basis of V over F such that the matrix of T in this basis of the form

[0 1 00]		
0 0 10		
0 0 0 1		(7+7)
$\begin{bmatrix} -\gamma_0, -\gamma_1, -\gamma_2, \dots, -\gamma_{r-1} \end{bmatrix}$, m3 • =	

6. a. Let V be an inner product space over F. Then for all $x, y \in V$, prove the following

i.
$$|\langle x, y \rangle| \ge ||x|| . ||y||$$
.

ii.
$$||x+y|| \le ||x|| + ||y||$$
.

- b. Define an orthogonal and orthonormal set. Explain Gram Schmidt method. Apply it to find an orthonormal basis from $\{[1 -4 \ 0 \ 1]^T, [7 -4 -4 \ 1]^T\}$.
- c. State and prove the Bessel's inequality.

(4+6+4)

a. Orthogonally diagonalize the matrix

$$A = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}.$$

- b. Define the following quadratic forms with example for each.
 - i. Positive definite.
 - ii. Positive semidefinite.
 - iii. Negative definite.
 - iv. Negative semidefinite.

Find the nature of the quadratic form

$$QF(x) = -3x_2^2 + 4x_1^2 - 11x_1x_4 + 5x_2x_4 + 18x_1x_2 + 16x_4^2.$$

c. Let $A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix}$. Find the maximum value of quadratic form subject to x^T . x = 1 and

find the unit vector at which this value is attained.

(6+4+4)

- 8. a. Define rank and signature of a real quadratic form. Show that two real symmetric matrices are congruent if and only if they have the same rank and signature.
 - b. Define bilinear and symmetric bilinear forms with example each. Let B be an bilinear form on a finite dimensional vector space V and let B be an ordered basis for V. Then show that B is symmetric of and only if $\psi_n(B)$ is symmetric. (7+7)

