

Reg. No.		41 1	

III Semester M.Sc. Degree Examination, April/May - 2022 MATHEMATICS

Numerical Analysis - II

Paper: M-305 T

(CBCS Scheme Y2K17)

(Rep)

Instructions to Candidates:

- 1. Answer any FIVE questions.
- 2. All questions carry Equal marks.

- 1. a. Establish Taylor's series method for y' = f(x, y), $x > x_0$ subjected to the condition $y(x_0) = y_0$, and solve the differential equation $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$; y(0) = 0, y'(0) = 1, by Taylor's series method so that the truncation error is not greater than $\frac{1}{2} \times 10^{-4}$ for $x \le 0.2$.
 - b. Find the approximate solution by picard's method for the differential equation $\frac{dy}{dx} = x^2 y, y(0) = 1 \text{ which is correct within an accuracy of } 10^{-3} \text{ for } 0 \le x \le 0.2.$ (4)
- 2. a. Derive Euler's modified formula to solve the differential equation y' = f(x, y) at $y(x_0) = y_0$. Find also discuss about its error. (7)
 - b. Using Euler's method, compute y_1 and y_2 taking h = 0.1 from the following differential equation $\frac{dy}{dx} = 1 + xy^2$, y(0) = 1. Also, compute the error in both. (7)
- 3. Derive the Adam Bashforth and Adam Moulton's third and fourth order methods for $y' = f(x, y), y(x_0) = y_0$. (14)
- 4. Describe the method of shooting technique for the solution of the higher order differential equation. And hence apply the same technique to solve $y'' + 6xy' + 5y = x^2$ with y(0) = 1, y(1) = 0. (14)

P.T.O.

(7)

- 5. Solve the equations $\frac{\partial u}{\partial t} = -16 \frac{\partial^2 u}{\partial x^2}$ subjected to the boundary conditions $u(x,0) = Sin[\pi x]$, $0 \le x \le 1$, u(0,t) = u(1,t) = 1 using
 - a. Schmidt method.

 $0 \le x \le 1$.

- b. Crank Nicolson method.
- c. Dufort Frankel method.

Take $\Delta v = 0.25$, $\Delta t = \frac{1}{36}$. (14)

- 6. a. A tightly streched string with fixed end points x = 0, and x = 1.0 is at rest in its equilibrium positions. At t = 0, each point of the string is given a velocity 20x(1-x). Find the displacement of the string at x = 0(0.1)1.0 for t = 0(0.1) 1.0 by finite differences using explicit method. Consider the normal form $\frac{d^2u}{dt^2} = \frac{d^2u}{dx^2}$ for vibrating string.
 - b. Use the method of characteristics to find the solution of the non linear equation $\frac{\partial^2 u}{\partial x^2} u^2 \frac{\partial^2 u}{\partial y^2} = 0$ at the first characteristic grid point between x = 0.2 and 0.3, y > 0, where u satisfies the condition $u = 5x^2$, and $\frac{\partial u}{\partial y} = 2x$ along the initial line y = 0,
- 7. a. Solve the heat equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subjected to the boundary conditions u(x,0) = 0, u(0,t) = 0, u(1,t) = t. Take $\Delta t = \frac{1}{36}$, $\Delta x = 0.25$.
 - b. Obtain the solution of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = Sin(\pi x).Sin(\pi y)$, $0 \le x, y \le 1$ with u = 0 on the square boundary. Take $\Delta x = \Delta y = \frac{1}{3}$. (7)
- 8. Find the solution of $U_t = U_{xx} + U_{yy}$, $0 \le x, y \le 1$ with conditions $U(x, y, 0) = Sin(\pi x).Sin(\pi y)$, $U_t(x, y, 0) = 0$, and U = 0 on the boundary. Take $\Delta x = \Delta y = \frac{1}{3}, \Delta t = \frac{1}{9}$. Perform one time integration using first Lees alternating direction implicit method.