

Reg. No.				

IV Semester M.Sc. Degree Examination, September/October - 2022 **MATHEMATICS**

Magnetohydrodynamics

Paper : M 403 T(E) (CBCS Y2K17 Scheme)

Time: 3 Hours

Maximum Marks: 70

Instructions to Candidates:

- 2.

- State and explain Faraday's law of induction and show that $\nabla \times \vec{E} = \frac{\partial B}{\partial t}$ for a stationary 1. a. circuit, with the usual notation.
 - Discuss the system of SI units as required in magnetohydrodynamic theory. b.
- State magnetic force law and also derive the expression $\vec{B} = \nabla \times \vec{A}$, with the usual 2. a. notations.
 - State Ohm's law. With usual notations, derive Ohm's law in its standard form. (7+7) b.
- Derive magnetic induction equation in its usual form. Explain the physical significance 3. a. of each terms involved therein.
 - State and prove Ferraro's law of isorotation. (7+7)b.
- State and prove Alfven's theorem and hence explain the concept of 4. a. frozen - in - phenomenon.
 - Show that there is no leakage of magnetic flux in a perfectly electrically conducting b. (8+6)fluid.
- Establish the integrability condition $\vec{B} \times (\nabla \alpha \cdot \vec{B}) = 0$ for a magnetic field \vec{B} to be 5. force - free at all times.
 - Discuss kink and sausage mode of instabilities. b.

(8+6)

P.T.O.

60887 **(2)**

- Explain the cause of propagation of Alfven waves and discuss the applications of 6. a. Alfven waves pertaining to geophysical and astrophysical context.
 - Describe the experiments of Lundquist and Lehnert demonstrate the existence of Alfven waves and hence derive the classical Alfven waves equations in their usual b. form.
- Show that the transverse Alfven waves transport equal amount of kinetic and magnetic 7. a. energies.
 - Show that the Lorentz force can be expressed as a surface force represented by the b. (7+7)stress tensor \underline{T}_{M} in the form $\overrightarrow{J} \times \overrightarrow{B} = V.\underline{T}_{M}$.
- Obtain the velocity and temperature distributions of a hydromagnetic plane Couette 8. a. flow.
 - Discuss the physical significance of Hartmann number and Prandtl number. (10+4) b.

