

Reg. No.	N 1 T	3.1		91

IV Semester M.Sc. Degree Examination, September/October - 2022 MATHEMATICS

Mathematical Methods (CBCS Y2K17 Scheme)

Paper: M-402 T

Time: 3 Hours

Instructions to Candidates:

- 1. Answer any **five** questions.
- 2. All questions carry equal marks.



- 1. a. Solve $u_{xx} u_{tt} = xt$ with $u = u_{t} = 0$ when t = 0 using Laplace transform.
 - b. Solve $u_t = u_{xx}, x \ge 0, t \ge 0$ subject to u(0,t) = 0 and $u(x,0) = \begin{cases} 1, & 0 < x < 1 \\ 0, & x \ge 1 \end{cases}$ by using Fourier sine transform. (7+7)
- 2. a. Solve $u_t = k(u_r + \frac{1}{r}u_r), 0 < r < \infty, t > 0$ with u(r, 0) = f(r), for $0 < r < \infty$ where k > 0 is a diffusivity constant by using Hankel transform.

b. Solve:
$$\phi(t) = \sin t - 2 \int_0^1 \cos(t - x) \phi(x) dx$$
. (7+7)

- 3. a. Convert $y''-3y'+2y=4\sin x$ with y(0)=1, y'(0)=-2 into the corresponding integral equation. Conversely derive the original differential equation along with initial conditions from the integral equation so obtained.
 - b. Solve $u(x) = \cos x x 2 + \int_0^x (t x)u(t)dt$ by the method of Resolvent kernel. (7+7)
- **4.** a. Solve $u(x) = x + \lambda \int_0^{2\pi} |\pi t| \sin x u(t) dt$ by using the method of degenerate Kernel.

b. Solve
$$u(x) = x^2 + 1 + \frac{3}{2} \int_{-1}^{1} (xt + x^2t^2)u(t)dt$$
 by using the Hilbert method. (7+7)

P.T.O.

- 5. a. Find the asymptotic behaviour of $I(x) = \int_0^x t^{-\frac{1}{2}} e^{-t} dt$ as $x \to \infty$.
 - b. Use Laplace method to find the leading behavior of $\int_0^{\frac{\pi}{2}} e^{-x} \tan t \, dt$ as $x \to \infty$. (7+7)
- **6.** a. Find the asymptotic expansion of $I(x) = \int_0^{\frac{\pi}{2}} e^{-t} t^{x-1} dt$ as $x \to \infty$ by using Watson lemma.
 - b. Use the method of steepest decent to find the asymptotic expansion of $I(x) = \int_0^1 \log t e^{ixt} dt$. (7+7)
- 7. a. Apply the perturbation method to find the approximate solution of $y'' = -e^{-x}y$ with y(0) = 1, y'(0) = 1.
 - b. Find the two term periodic solution of $y'' + y = \in \left(y' \frac{1}{3} y'^3 \right)$ with y(0) = A, y'(0) = 0. (7+7)
- 8. a. Solve $\in y''+(1+\in)y'+y=0$ with y(0)=0, y(1)=1 by using singular perturbation method.
 - b. Find the leading term of WKB approximate solution of $\in 62y'' = Q(x)y$ where $Q(x) \neq 0$. (7+7)

