

|          |        | <br>_ | <br> |  |
|----------|--------|-------|------|--|
| Reg. No. | i di a | · : . |      |  |

## IV Semester M.Sc. Degree Examination, September/October - 2022 **MATHEMATICS**

## Measure and Integration (CBCS - Y2K17 Scheme)

Paper M 401 T



## Instructions to Candidates:



All questions carry equal marks. ii.



Maximum Marks: 70

- Define Lebesgue outer measure m\*A of a set A of real numbers. Let  $\{A_n\}$  be a 1. a. countable collection of sets of real numbers. Prove that  $m^*(\cup A_n) \leq \sum m^* A_n$ .
  - Show that collection of all measurable sets is a  $\sigma$  algebra. b.
  - If  $\{I_n\}$  is a finite covering of  $Q \cap [0,1]$  by open intervals, show that  $\sum I(I_n) \ge 1$ . Is this c. (5+4+5)true if  $\{I_n\}$  is infinite? Justify.
- Show that a set  $E \subset \mathbb{R}^1$  is measurable if and only if given  $\varepsilon > 0, \exists$  a finite union I of 2. a. intervals such that  $m*(E\Delta I < \varepsilon)$ .

Construct an uncountable set of measure zero. b.

(7+7)

- State Littlewood's three principles and prove any one of them. 3. a.
  - Let  $f \ge 0$  and measurable. Show that there exists a sequence  $\{\varphi_n\}$  of simple functions b. (6+8)such that  $\varphi_n \uparrow f$ .
- State and prove Fatou's lemma. 4. a.

b. Let 
$$\int_E f < \infty$$
,  $\int_E g < \infty$ . Show that  $\int_E (f+g) = \int_E f + \int_E g$ . (7+7)

- State and prove Vitali Covering Lemma. 5. a.
  - If f is integrable on |a,b| and  $\int_{a}^{b} f(t)dt = 0$  for all  $t \in [a,b]$  then show that f(t) = 0 a.e. on b. (7+7)|a,b|.

P.T.O.

6. a. Find the Dini Derivatives of  $f(x) = \begin{cases} 0 & x = 0 \\ x \sin \frac{1}{x} & x \neq 0 \end{cases}$  at x = 0.

b. If 
$$\int_{a}^{b} f < \infty$$
 and  $F(x) = F(a) + \int_{a}^{x} f(t)dt$ , show  $F' = f$  a.e. on [a,b]. (7+7)

- 7. a. With usual notation prove that T = P + N and f(b) f(a) = P N.
  - b. If f exists and bounded on [a,b], then prove that f is of bounded variation on [a,b].
  - c. Show that  $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & 0 \le x \le 1 \\ 0 & x = 0 \end{cases}$  is of bounded variation on [0,1]. (5+4+5)
- 8. a. If  $f_1, f_2:[a,b] \to |a,b|$  are absolutely continuous, If  $f_1 \circ f_2$  absolutely continuous on [a,b]?
  - b. If f is absolutely continuous on [a,b], show  $f \in BV[a,b]$  and that f is an N function.
  - c. Show that a function f is an indefinite integral if and only if it is absolutely continuous. (3+4+7)

