LIBRARY OF

					00000			
		OFFICE OF	NOTE OF		OL O'THINKS	Commission of the London	The second of	
Reg. No.			1021 FUEL	-	NAME OF TAXABLE PARTY.			

IV Semester M. Sto/Degree Examination, September/October - 2022

MATHEMATICS

Riemannian Geometry (CBCS Scheme Y2K17)

Paper: M-403 T(A)

Time: 3 Hours

Maximum Marks: 70

60883

Instructions to Candidates:

- 1. Answer any **five** questions.
- 2. All questions carry **equal** marks.
- 1. a. Obtain an \mathbb{R}^2 atlas of class C^{∞} on \mathbb{S}^2 .
 - b. Prove that a C^{∞} atlas on a set M induces a unique topology with respect to which every chart of the atlas is a homomorphism. (8+6)
- 2. a. Show that the set of all real r×s matrices is a C^{∞} manifold of dimension rs.
 - b. Show that figure 8 has two atlasses which are not equivalent.
 - c. Show that every open subset of a C^{∞} manifold of dimensions n is a C^{∞} manifold of dimensions n. (4+7+3)
- 3. a. Prove that the induced topology on a C^{∞} manifold is a first axiom space and also a T_1 space.
 - b. Define Lie bracket of two vector fields. Prove that Lie bracket of two vector fields is a vector field.
 - c. State and prove the Jacobi identify. (6+4+4)
- 4. a. Define a pullback function. If $F: M_1 \to M_2$ and $G: M_2 \to M_3$ be differential maps, then prove $(G.F)^* = F^*.G^*$.
 - b. Show that a derivative map is a vector space homomorphism.
 - c. Prove that the tensor product of two tensors is associative, distributive over addition but is not commutative. (4+4+6)

P.T.O.

- 5. a. Prove that fundamental theorem of Riemannian geometry.
 - b. Prove that

i.
$$\partial_k g^{ij} = \Gamma^i_{hk} g^{hj} - \Gamma^j_{hk} g^{hi}$$
.

ii.
$$\Gamma_{ji}^i = \partial_j \left(\log \sqrt{g} \right), g = \left| g_{ij} \right|.$$
 (8+6)

- 6. a. Prove that Christoffel symbols are not components of a tensor in general.
 - b. Show that curvature tensor R satisfies the following properties.

i.
$$R(X,Y,Z,W) = -R(Y,X,Z,W)$$
 and hence prove $R(X,X,Z,W) = 0$.

ii.
$$R(X, Y, Z, W) + R(Y, Z, X, W) + R(Z, X, Y, W) = 0$$
.

iii.
$$R(X,Y,Z,W) = R(Z,W,X,Y)$$
.

iv.
$$\nabla_X R(Y, Z, U, V) + \nabla_Y R(Z, X, U, V) + \nabla_Z R(X, Y, U, V) = 0$$
.

c. State and prove Schur's theorem.

(3+4+7)

- 7. a. Prove that a curve σ is a geodesic in M if and only if
 - i. tangent vector field of σ has constant length.
 - ii. geodesic curvature of σ is zero, i.e. $K_g = 0$.
 - b. Derive Gauss Codazzi equations for hypersurfaces of Riemannian manifold. (6+8)
- 8. a. Let M be a hypersurface of a Riemannian manifold and γ be a two dimensional subspaces of $T_p M$, $p \in M$. Let $k(\gamma)$ be the sectional curvature of M and $\overline{k(\gamma)}$ be the sectional curvature of \overline{M} . Let (X,Y) be orthonormal basis for γ . Then prove that $\overline{k}(\gamma) = k(\gamma) g(LX, X)g(LY, Y) + (g(LX, Y))^2$.
 - b. Prove that the Weingarten map is self adjoint.
 - c. State and prove Gauss theorem egregium.

(5+4+5)