

DCCA301

Reg. No.	,	, A.,			. 4	
reg. No.			,			

III Semester B.C.A. Degree Examination, April - 2023

COMPUTER APPLICATION

Operating Systems

Paper: CA - CIIT

(NEP Scheme)

Time: 21/2 Hours

Maximum Marks: 60 Instructions to Candidates:

Answer all the questions.

PART-A

Answer any four questions. Each carries 2 marks. L

 $(4 \times 2 = 8)$

- Define
 - Process. a.
 - Thread. b. -
- What do you mean by critical section? 2.
- 3. What is safe state?
- 4. What is page fault?
- What are the various file operations? 5,
- Define Rotational latency. 6.

PART-B

Answer any four questions. Each question carries 5 marks. П.

 $(4 \times 5 = 20)$

- Explain the states of a process with a block diagram.
- What is a system call? Explain its types.
- Explain producer consumer problem using semaphores. 9.

P.T.O.

10. Consider the following set of process with CPU burst time and arrival time.

PID	Arrival time	Burst time (in ms)
$P_{\hat{t}}$	0	.5
P_2	1	7
P ₃	2	4
P_4	3	2

Draw the Gantt chart illustrating the execution of the process using Round robin algorithm with a time slice of 2 ms. Find average waiting time and turn around time.

- 11. What is fragmentation? Discuss the different types of fragmentation.
- 12. Briefly explain the different types of network based operating system.

PART-C

III. Answer any four questions. Each carries 8 marks.

 $(4 \times 8 = 32)$

- 13. Define operating system. Explain the operating system structure with a block diagram.
- 14. Explain necessary conditions of deadlock. Discuss the methods of handling deadlock recovery.
- 15. Explain interprocess communication in detail.
- 16. Consider the following page reference string.

1,3,0,5,6,3 with 3 page frames. Find the number of page faults using FIFO page replacement algorithm.

- 17. Explain disk scheduling algorithms SCAN and look with suitable graphs.
- 18. Write short notes on:

a. Resource - Allocation graph.
b. Segmentation.
(4)

7	(T.) E	OF G	Work	
	LIB	RAI	RY	TO STATE
CHA	Date:_	ga: 1000 NG0		1
1	EAN	ميد	101	I_{i}

1	5	2	2	2
L	J	J	4	Ü

Dan Ma				· '	
Reg. No.					
8		-			

III Semester B.C. April - 2023

COMPUTER APPLICATIONS

Operating System (CBCS Scheme)
Paper: BCA 305 T

Time: 3 Hours Maximum Marks: 100

Instructions to Candidates:

Answer all the sections.

SECTION-A

L Answer any Ten of the following. Each question carries 2 marks. $(10\times2=20)$

- 1. Define operating system. Give two examples.
- 2. Define process.
- 3. What is a thread?
- 4. Define aging.
- 5. What is pre emptive scheduling?
- 6. What is thrashing?
- 7. Mention any two functions of operating system.
- 8. Explain multi programming system.
- 9. What is a system call?
- 10. Define Deadlock.
- 11. Mention the responsibilities of memory management?
- 12. Explain the terms swap in and swap out.

SECTION-B

II. Answer any Five of the following. Each question carries 5 marks.

(5×5≒25)

- 13. Explain services provided by the operating systems.
- 14. Explain process state with a neat diagram.
- 15. Discuss the functions of file management.
- 16. Explain the difference between local and global allocations.
- 17. Explain steps involved in page replacement.
- 18. Explain the methods of handling deadlock.

P.T.O.

- 19. What is paging? Explain page fault.
- 20. Write a short note on virtual machine.

SECTION-C

III. Answer any Three of the following. Each question carries 15 marks.

 $(3 \times 15 = 45)$

- 21. Explain types of operating system. Mention its advantages and services.
- 22. Explain the inter process communication in detail.
- 23. What is process synchronization? Explain producer consumer problem using semaphores.
- 24. a) Explain Banker's algorithm.

(10)

b) Briefly explain deadlock recovery.

(5)

25. Explain the disk scheduling algorithms SCAN, Look and C-look with suitable graphs.

SECTION-D

IV. Answer any One of the following. Each question carries 10 marks.

 $(1 \times 10 = 10)$

26. Consider the following set of processes with the length of the CPU burst time given in MS.

Process	Burst time	Priority		
P_1	5	2 .		
P ₂	1	4		
P ₃	2	3		
P ₄	6	1		
P ₅	8	3		

The process are assumed to have arrived in the order P_1 , P_2 , P_3 , P_4 and P_5 all at time 0 (zero).

- i. Draw four Gantt chart illustrating the execution of these processes using FCFS, SJF, and non pre emptive priority.
- ii. What is the turnaround time and waiting time of each process in the entire scheduling algorithm mentioned above.
- 27. Consider the reference string.

7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7.

Find the page fault rate using FIFO page replacement algorithm.