GBGS SCHEME

BCHEM102/202

First/Second Semester B.E./B.Tech. Degree Examination, June/July 2023

Applied Chemistry for ME Stream

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Organize the determination of calorific value of a solid fuel using Bomb	7	L2	CO ₁
		Calorimeter.			
	b.	Sketch and explain the construction and working of photovoltaic cells and	6	L2	CO1
		define solar cell.			
	c.	0.75 g of coal sample (carbon 90%, H ₂ 5% and 5% ash) was subjected to	7	L3	CO1
		combustion in bomb calorimeter. Mass of water taken in calorimeter was			
		2.5 kg and the water equivalent of calorimeter is 0.65 kg. The rise in			
		temperature was found to be 3.2°C. Calculate higher and lower calorific			
		values of the sample. Latent heat of steam = 2457 kJ/kg and specific heat of			
		water = $4.187 \text{ kJ/kg/}^{\circ}\text{C}$.			
		OR		ı	
Q.2	a.	Describe the construction and working of methanol oxygen fuel cell and its	7	L2	CO1
		applications.			
	b.	Write notes on: (i) Power alcohol (ii) Bio-diesel	6	L2	CO1
	c.	Illustrate the production of hydrogen by electrolysis of water.	7	L2	CO1
		Module – 2			ı
Q.3	a.	Define corrosion. Describe the electrochemical theory of corrosion taking	7	L2	CO2
		rusting of iron as an example.			
	b.	Explain: (i) Water line corrosion (ii) Pitting corrosion	6	L2	CO2
	c.	What is electroless plating? Explain electroless of Nickel.	7	L2	CO ₂
		OR			
Q.4	a.	What is meant by metal finishing? Mention (any five) technological	6	L2	CO ₂
		importance of metal finishing.			~~~
	b.	Explain the process of (i) Galvanizing (ii) Anodizing of Al.	7	L2	CO ₂
	c.	What is electroplating? Explain electroplating of chromium. Mention why	7,	L2	CO ₂
		chromium cannot be used as anode.	1		
		Module – 3		,	
Q.5	a.	Illustrate about the number average and weight average molecular weight.	6	L3	CO3
	b.	Organize the properties and applications of lubricants.	7	L2	CO3
	c.	Organize the synthesis, properties and applications of polystyrene.	7	L2	CO3
		OR			
Q.6	a.	Organize the synthesis, properties and applications of Kevlar.	6	L2	CO3
	b.	Illustrate the synthesis, properties and applications of polyester.	7	L2	CO3
	c.	Organize the synthesis, properties and applications of PMMA.	7	L2	CO3
		Module – 4			
Q.7	a.	Sketch and explain the optical sensor (colorimetry) and write its	7	L2	CO4
		applications.			
	b.	Organize the instrumentation of potentiometric sensor and its application in	6	L2	CO4
		the estimation of iron.			
	c.	Explain the concept of phase, components, degree of freedom, phase rule	7	L2	CO4
		equation			
		1 of 2			

BCHEM102/202

		OR	177-2000		
Q.8	a.	Explain along with diagram Lead-Silver two component system.	7	L2	CO ₄
	b.	Explain the principle, instrumentation and working of pH sensor (Glass	7	L2	CO ₄
		electrode)			~~ 1
	c.	Organize the pH sensors applications in the determination of pH of	6	L2	CO ₄
		beverages.			
		Module – 5		~ ^	60.
Q.9	a.	Explain the properties and applications of carbon nanotubes and graphene.	6	L2	COS
	b.	Define alloys. Explain the composition along with properties of AlNiCo.	7	L2	CO5
	c.	Explain the chemical composition, properties and applications of	7	L2	CO5
		perovekites.			
		OR			
Q.10	a.	Explain the synthesis of nanomaterials by sol-gel method.	7	L2	CO
	b.	Explain size dependant properties of nanomaterials with respect to surface	6	L2	CO
		area, catalytical and thermal.			
	c.	Define Alloys. Explain the composition along with properties of Brass.	7	L2	CO
		A CIVITATION OF			

The property of the second sec