Third Semester B.Arch. Degree Examination, Jan./Feb. 2023
Building Structure-II
Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1
a. Explain the following terms :
(i) Stress
(ii) Strain
(iii) Young's modulus
(iv) Factor of safety
b. Explain stress-strain curve for mild steel subjected to tensile load.
(10 Marks)
(10 Marks)

OR

2 a. Find the Young's modulus of a brass rod of diameter 25 mm and a length 250 mm which is subjected to a tensile load of 50 kN when the extension of the rod is equal to 0.3 mm .
An axial pull of 35 kN is acting on a bar consisting of 3 lengths as shown in Fig. Q2 (b). If young's modulus $=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Determine : (i) Stresses in each section and (ii) Total extension of the bar.

Fig. Q2 (b)
(10 Marks)
Module-2
3
a. Define the following :
(i) Bulk modulus
(ii) Rigidity modulus
(iii) Modulus of Elasticity
(iv) Temperature stress
(10 Marks)
b. Determine the value of Young's modulus and Poisson's ratio of a metallic bar of length 30 cm , breadth 4 cm and depth 4 cm when the bar is subjected to an axial compressive load of 400 kN . The decrease in length is given as 0.075 cm and increase in breadth is 0.03 cm .
(10 Marks)
OR
4 a. A steel rod of 3 cm diameter is enclosed centrally in a hollow copper tube of external diameter 5 cm and internal diameter of 4 cm . The composite bar is then subjected to an axial pull of 45 kN . If the length of each bar is equal to 15 cm . Determine the stress in the rod and tube and load carried by each bar. $\mathrm{E}_{\mathrm{S}}=2.10 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{E}_{\mathrm{C}}=1.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} . \quad$ (14 Marks)

Fig. Q4 (a)
b. Explain the concept of temperature stresses on structural elements.
(06 Marks)

Module-3

5 a. Write expression for effective length of columns for various end conditions.
(10 Marks)
b. Calculate the safe compressive load on a hollow cast iron column (one end rigidly fixed and other hinged) of 15 cm external diameter, 10 cm internal diameter and 10 m in length. Use Euler's formula with a factor of safety 5 and $E=95 \mathrm{KN} / \mathrm{mm}^{2}$.
(10 Marks)

OR

a. Explain Euler's formula for long columns. What are the assumptions and limitations of Euler's theory for critical load on a long column?
($\mathbf{1 0}$ Marks)
b. A solid round bar 3 m long and 5 cm in diameter is used as a strut with both ends hinged. Determine the crippling load. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Determine the crippling load if both ends of the strut are fixed.
(10 Marks)
a. Explain the following :
(i) Bending Moment Diagram (BMD).
(ii) Shear Force Diagram (SFD).
(iii) Sign convention followed to represent BMD and SFD.
(iv) Types of loads on beams
(10 Marks)
b. A simply supported beam shown in the figure below carries two concentrated loads and a uniformly distributed load. Draw the SFD and the BMD.
(10 Marks)

Fig. Q7 (b)

OR

8 Draw BMD and SFD for overhanging beam shown in the Fig. Q8. Clearly indicate the point of contraflexure.
(20 Marks)

Fig. Q8

Module-5

9 a. State the assumptions made in theory of simple bending.
(06 Marks)
b. The Fig. Q9 (b) below shows the cross section of a beam which is supported to a shear force of 20 kN . Draw shear stress distribution across the depth showing values at salient points.
(14 Marks)

Fig. Q9 (b)
OR
10 a. Write the expression for section modulus for the following :
(i) Rectangular section.
(ii) Hollow rectangular
(iii) Circular section
(iv) Hollow circular section
(10 Marks)
b. A simply supported beam of span 5 m has a cross section $150 \mathrm{~mm} \times 250 \mathrm{~mm}$. If the permissible stress is $10 \mathrm{~N} / \mathrm{mm}^{2}$. Find the maximum intensity of uniformly distributed load it can carry.
(10 Marks)

