Second Semester B.Arch. Degree Examination, Dec.2023/Jan. 2024 Building Structures - II

Time: 3 hrs.

Note: Answer uny FIVE full \ddagger uestions, choosing ONE full question from each module.

Module-1

1 a. Define i) Tensile stress
ii) Shear stress
iii) Hookes Law
iv) Factor of Safety.
(04 Marks)
b An axial pull of 35000 N is acting on a bar consisting of three lengths as shown in Fig. Ql(b). If the Young's modulus $E=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. Determine
i) Stress in each section
ii) Total extension of the Bar
(10 Marks)

Fig. Q1(b)

c. A Brass bar having cross - sectional area $300 \mathrm{~mm}^{2}$ is subjected to axial forces as shown in Fig. Q1(c). Find the elongation of the Bar $\mathrm{E}=84 \mathrm{GPa}$.
(06 Marks)

Fig. Q1(c)

OR
2 a. With the help of neat sketch, explain Stress - Strain curve of Mild steel specimen. (08 Marks)
b. Explain briefly : i) Poisson's Ratio ii) Bulk modulus iii) Volumatric strain iv) Rotation between E \& G.
(04 Marks)
c. A 1.5 m long steel bar is having uniform diameter of 40 mm for a length of 1 m and in the next 0.5 m its diameter gradually reduces from 40 mm to 20 mm as shown in Fig. Q2(c). Determine the elongation of this bar when subjected to an axial tensile load of 160 kN . Given $E=200 \mathrm{GN} / \mathrm{m}^{2}$.
(08 Marks)

Module-2

3 a. Define Shear force and Bending moment with sign convention.
(06 Marks)
b. Calculate Shear force and Bending moment and draw SFD and BMD for Fig. Q3(b).
(14 Marks)

Fig. Q3(b)

OR
4 a. Draw SFD and BMD for a Cantilever beam subject to UDL of $\mathrm{W} \mathrm{kN} / \mathrm{m}$ for the whole length ' ℓ '.
b. A simply supported beam of length 6 m , carries point load of 3 kN and 6 kN at distances of 2 m and 4 m from the left end. Draw the shear force and bending moment. Diagrams for the beam.
(14 Marks)

Module-3

5 a. State the assumptions made in theory of Simple Bending.
(06 Marks)
b. The T section in Fig. Q5(b) is used as a simply supported beam over a span of 8 m . It carries a udl of $1.5 \mathrm{kN} / \mathrm{m}$ over its entire span. Calculate the maximum tensile and compressive stresses occurring in the section.
(14 Marks)

Fig. Q5(b)

OR

6 a. A rectangular beam 100 mm wide and 250 mm deep is subjected to a maximum shear force of 50 kN . Determine i) Average shear stress ii) Maximum shear stress
iii) Shear stress at a distance of 25 mm above the Neutral axis.
iv) Shear stress at N.A.
(10 Marks)
b. An I - section beam $350 \mathrm{~mm} \times 150 \mathrm{~mm}$ has a web thickness of 10 mm and a Flange thickness of 20 mm . If the shear force acting on the section is 40 kN , find the maximum shear stress developed in the I-section.
(10 Marks)

Fig. Q6(b)

Module-4
7 a. Define Slenderness Ratio and Buckling load
(0.4 Marks)
b. Explain the limitations of Euler's theory.
(06 Marks)
c. A build up I - section has an overall depth of 400 mm , Width of Flanges 300 mm , Thickness of flanges 50 mm and Web thickness 30 mm . Simply supported ends and it deflects by 10 mm when subjected to a load of $40 \mathrm{kN} / \mathrm{m}$ length. Find the safe load if this I - section is used as a column with both ends hinged. Use Euler's formula. Assume a Factor of safety 1.75 and take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
(10 Marks)

OR

8 a. A 1.5 m long column has a circular cross section of 50 mm diameter, one end of the column is fixed in direction and position and other end is free. Taking the FOS as 3, calculate the safe load using i) Euler's formula taking $\mathrm{E}=1.2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
ii) Rankine formula taking Yield stress $560 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{a}=\frac{1}{1600}$.
(10 Marks)
b. A hollow circular section 2.8 m long column, one end fixed and hinged at other end. External diameter is 150 mm and thickness of wall is 15 mm . Rankine's constant $=\frac{1}{1600}$ and $\sigma_{c}=550 \mathrm{MPa}$. Compare the buckling loads. Obtained by Euler's formula and Rankine's formula. Take $\mathrm{E}=80 \mathrm{GPa}$.
(10 Marks)

Module-5

9 a. Determine the maximum slope and maximum deflection for a cantilever beam shown in Fig. Q9(a) in terms of EI.
(10 Marks)
Fig. Q9(a)

b. Find the deflection at ' C ' for the beam shown in Fig. $\mathrm{Q} 9(\mathrm{~b}) . \mathrm{EI}=1 \times 10^{13} \mathrm{~N} \mathrm{~mm}^{2}$. Use Macaulay's method.
(10 Marks)

Fig. Q9(b)

OR

10 a. Determine the slope at supports and maximum deflection of the beam shown in Fig. Q10(a) in terms of EI.
(10 Marks)
Fig. Q10(a) fommmonnonsing
b. Determine the i) Slope at mid point and ii) Deflection under the load. EIS 200GPa. $\mathrm{I}=15 \times 10^{6} \mathrm{~mm}^{4}$. Refer Fig. Q10(b).
(10 Marks)

3 of 3

