Third Semester B.E. Degree Examination, Dec.2023/Jan.2024 Analog Electronic Circuits

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain biasing of BJT by collector to base feedback resistor for a CE amplifier. (08 Marks)
 - b. A BJT having $\beta = 100$ is biased at a DC collector current of 1 mA. Find the value of g_m , r_e , r_π at the bias point. Assume $V_T = \frac{1}{40}V$. (04 Marks)
 - c. Draw the small signal equivalent circuit model for MOSFET and obtain the expression for voltage gain.

OR

- 2 a. Explain biasing of MOSFET using drain to gate feedback resistor. (06 Marks)
 - b. What is transconductance of a MOSFET and mention the three different expression used to calculate the g_m.

 (06 Marks)
 - c. For the circuit shown in Fig. Q2 (c), find the required value of V_{GS} to establish a dc bias current $I_D = 0.5$ mA. Device parameters are $V_t = 1$ V, $K'_n \frac{\omega}{L} = 1$ mA/V² and $\lambda = 0$. What is the percentage change in I_D obtained when the transistor is replaced with another having $V_t = 1.5$ V. (08 Marks)

Module-2

- a. With mathematical equations, explain the different internal capacitances in the MOSFET.

 (10 Marks)
 - b. Explain the high frequency response of a CS amplifier using MOSFET and derive its upper cut off frequency. (10 Marks)

OR

- 4 a. Draw the circuit of a RC phase shift oscillator using MOSFET and explain the working.

 (06 Marks
 - b. A 2 MHz quartz crystal is specified to have L = 0.52 H, $C_S = 0.012$ PF, $C_P = 4$ PF and $R = 120 \Omega$. Find f_S , f_P . (04 Marks)
 - c. Derive the expression of R_{in}, R_O, A_{VO} and A_V using T model for the common source amplifier with a source resistance circuit. (10 Marks)

Module-3

- 5 a. What are the properties of negative feedback and explain it briefly. (10 Marks)
 - b. What are the topologies of basic feedback circuit? (04 Marks)
 - c. For the block diagram, shown in Fig. Q5 (c), a signal of 1 V from the source results in a difference signal of 10 mV being provided to the amplifier (A) and 10 V applied to the load. For this arrangement identify the value of A and β that apply. (06 Marks)

Fig. Q5 (c)

OR

- 6 a. Draw the circuit of a transformer coupled class-A power amplifier. Prove that the maximum conversion efficiency is 50%. (08 Marks)
 - b. What is output stage and discuss the classification of output stages based on the collector current? (06 Marks)
 - c. Neatly draw the schematic diagram of class C tuned amplifier and discuss the input and output waveforms at the collector terminal. (06 Marks)

Module-4

- 7 a. Derive the expression of output voltage and explain the operation of 4-bit DAC using R-2R circuit. (10 Marks)
 - b. What is meant by precision rectification? Explain with a neat circuit diagram, the working of a small signal half wave precision rectifier using Op-Amp. (10 Marks)

OR

- 8 a. With the help of a neat circuit diagram and relevant waveforms, explain the working of astable multivibrator circuit operation using 555 timer IC. Derive expression for T_{ON}, T_{OFF} and T. (10 Marks)
 - b. Explain the working of a second order lowpass butterworth filter. Write the design equations. Design the circuit for cut off frequency of 1 kHz. (10 Marks)

Module-5

- 9 a. With the help of the static V-I characteristics, explainthe three modes of operation of the thyristor. (10 Marks)
 - b. Explain the working of a UJT firing circuit using SCR with necessary circuit diagram and waveforms. (10 Marks)

OR

- 10 a. Discuss various power converter circuits with necessary sketches and applications of each.

 (08 Marks)
 - b. List different turn on methods, explain all in brief.

(08 Marks)

c. Enumerate the applications of power electronics.

(04 Marks)