

177 11						
San Joseph	A 3.6 2 18					
TICN	1 -4 11					
ODIA	7 118 1					
	V 67 15					

BEC303

Third Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Electronic Principles and Circuits

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

			1 ×		2
31		Module – 1	M	L	C
Q.1	a.	Explain the simplified analysis of a voltage divider bias circuit of a transistor. Also list the steps in analysis.	8	L1	CO1
	b.	Analyze a VDB Amplifier circuit with respect to DC circuit, AC - π model,	7	L3	COI
		AC – T model.	8		
	c.	Design a positive and negative biased clipper circuit.	5	L3	CO1
8		OR			
Q.2	a.	With the importance of Coupling capacitor, explain the Base – Biased amplifier circuit. Support your answer with base current, collector current and collector voltage. Also draw its voltage waveforms.	10	L3	CO1
	b.	Explain the basic idea of Common – Collector (CC) amplifier. Give the mathematical relation of AC. Emitter resistance (r_e) , Voltage Gain (A_v) , Input impedance of the base $(Z_{in(base)})$ and Input impedance of the stage $(Z_{in(stage)})$.	6	L2	CO1
	c.	Calculate the output impedance for the circuit below, given $V_{BQ} = 15V$.	4	L2	CO1
		Fig. Q2(c) Wpp (3) RG RS RE Floor Floor	ş	2.	√ ± 7 €
		Module – 2			
Q.3	a.	Biasing by fixing V_{GS} is not a good approach to bias a MOSFET. Why? Explain biasing by fixing V_{G} and connecting a resistance in the source for MOSFET.	8	L2	CO2
x v	b.	Design a fixed V_G and resistance in the source biasing circuit, to establish drain current $I_D=0.5mA$, $V_t=1V$, $K_n^TW/K=1mA/V^2$, $\lambda=0$. Use power supply $V_{DD}=15V$.	5	L3	CO2
	c.	Obtain the transfer and drain characteristics of $n-$ channel MOSFET and calculate Drain resistance (r_d) , Mutual conductance (gm) and Amplification factor $(\mu).$	7	L2	CO2
		OR		AL W. III	
Q.4	a.	Illustrate the development of T – equivalent circuit model for the MOSFET.	6	L2	CO2
		4 00			

Q.8	a.	OR Explain the Ideal response of filters.	8	L1	CO4
			81 V 3		157
		Fig. Q7(c) $R_1 \ge 1\Omega$	11		
ini it		av of the RL \$252 Viout		# · ·	W1 2
	Ţ	tisV CHI2	1	2 2	20 T
	c.	Calculate the load power, load current for the given VCIS amplifier circuit.	4	L2	CO4
		and Ideal Closed – Loop Voltage gain. Also define Gain stability, Closed loop input impedance and Closed loop output impedance of a VCVS amplifier.		40	
Q.7	a. b.		8	L2	CO ²
0.7		Module – 4 Explain the four types of Negative feedback amplifier.	8	L1	CO ₄
٠.	c.	Explain the Monostable operation of 555 timers.	6	L2	CO3
	b.	Explain the working of Colpitts Oscillator with CE connection.	6	L2	CO:
Q.6	a.	Describe the working of inverting Schmitt trigger circuit. How is Schmitt trigger different from regular comparator circuit? Explain with the help of Hysteresis curve.	8	L2	CO
		OR	0	~ 0	604
	c.	Design and draw the frequency response of common source JFET / MOSFET amplifier.	7	L2	CO3
	b.	How does the design and configuration of an Op – amp R/2R DAC contribute to its accuracy and performance in converting digital signals to analog signals?	8	L2	CO3
Q.5	a.	Explain how an Op – amp summer circuit be configured to function as a subtractor.	5	L1	CO3
	Y	Module 3	-	T 4	001
	c.	For a Common Gate (CG) amplifier circuit , given $g_m=1mA/V$, $R_D=15k\Omega$, $R_L=15K\Omega$, $R_{sig}=50\Omega$, $R_G=4.7\mu\Omega.$ Find R_{in} , R_{out} , A_{VO} , A_V and G_V .			CO2
	b.	Draw and explain the small signal equivalent model for Common – Source amplifier without source resistance and write the equation for R_{in} , R_{out} , A_V and G_V .	6	L2	CO2

				1 - 1	
***	b.	Determine the pole frequency, Q, Cutoff frequency and 3 dB frequency,	5	L2	CO4
4 .		for the filter circuit given below:	**		
2.		Coans			
		$22k\Omega$ C_2 270			
		Voult Voult	6.0	11.	
		Fig. Q8(b) Vin 390PFT	2		
	v		2-7		
2 2		G: W 0.00 W 1.20 W - 1.54		8	
		Given $K_0 = 0.99$, $K_C = 1.38$, $K_3 = 1.54$.	5		
	_	Design a Halfwave and Fullwave precision rectifier using Op – amp.	7	L3	CO4
	c.	Design a flatiwave and fullwave precision rectifer using op amp.	,		
		Module – 5	8		
Q.9	a.	Explain class A amplifier, interns of its power gain, Output power, Power	8	L1	CO5
		dissipation and efficiency.		*	
10					
	b.	Explain class B push pull emitter follower amplifier. How can the crossover	8	L1	CO5
		distortion be eliminated?			
		G. I.	4	L2	CO5
	c.	Calculate the maximum transistor power dissipation and maximum output	4	LZ	003
		power for the given circuit.			
		1000		25 25	
		rde to		100	
		Fig. Q9(c)			
		288			
		100 s >			
					2 2
				5	
		OR	н.		The state of the s
0.10		What is an SCR? With the help of basic SCR circuit, explain the gate	6	L1	CO5
Q.10	a.	triggering.			
× ,		tilggering.		20	
-,	b.	Explain the phase control method of TRIAC, along with the voltage	7	L1	CO5
		waveforms.			* * *
	A				3 (1)
	c.	Design a full wave controlled rectifier circuit using RC triggering.	7	L3	CO5
	V			2 1 3	20 1

* * * * *