CBCS SCHEME

British Comment	
\$17.5 km , 10 km	
~~~~	
ODIA	
4 4	

BEC306C

## Third Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Computer Organization and Architecture

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	N. AF	¥	
Q.1	a.	YYY1.4	M	L	C
	b.	Explain following with an example:	10	L1	CO1
	2.	i) Three address instruction ii) Two-address instruction	06	L1	CO1
		iii) One-address instruction			
	c.	Explain Big Endian and Little Endian with neat diagram.	04	L1	CO1
		OR	04	LI	COI
Q.2	a.	Discuss IEEE standard for single precision and double precision floating	08	L1	CO1
		point numbers with example.	00	LI	COI
	b.	What is system software? List functions of system software and explain	08	L1	CO1
		how the processor is shared between user program and os routine.	00	LI	COI
	c.	Explain computer basic performance equation.	04	L1	CO1
		Module – 2	101	LJI	COI
Q.3	a.	What is an addressing mode? Explain any five types of addressing modes	10	L1	CO2
		with example.			002
	b.	Write a program to add 'n' number using indirect addressing mode.	05	L2	CO2
	c.	Explain stack operations.	05	L2	CO ₂
		OR			
Q.4	a.	What are assembler directives? Explain various assembler directives used	08	L2	CO2
		in assembly language program.			
	b.	Explain subroutine linkage with an example using linkage register.	06	L2	CO2
	c.	Explain the shift and rotate operations with example.	06	L2	CO2
		Module – 3			
Q.5	a.	Showing register configuration in I/O Interface, Explain program controlled	08	L2	CO2
		input/output with program.			
	b.	Explain the registers involved in DMA interface.	06	L2	CO2
	c.	What is an interrupt? Explain interrupt hardware.	06	L2	CO2
	1	OR			
Q.6	a.	Explain the following method of handling interrupts from multiple devices.	08	L2	CO3
		i) Daisy chain method ii) Priority structure			
	b.	What is Bus arbitration? Explain centralized bus arbitration mechanism	08	L2	CO3
		with a neat diagram.			
	c.	Explain the concept of vectored interrupt.	04	L2	CO ₃
0.7		Module – 4			
Q.7	a.	Explain internal organization of 16×8 memory chip.	08	L2	CO4
	b.	With a neat diagram, explain working principle of magnetic disk.	06	L2	CO4
	c.	With a neat diagram, explain virtual memory organization.	06	L2	CO ₂
0.6	Т	OR			
Q.8	a.	Explain the internal organization of 2M×8 DRAM chip with neat diagram.	08	L2	CO3
	b.	Explain a static RAM cell with a neat diagram.	06	L2	CO3
	c.	Discuss the concept of cache memory.	06	L2	CO ₃

## BEC306C

		Module – 5					
Q.9	a.	Explain with neat diagram, Single Bus organization of data path inside a processor.	08	L2	CO4		
	b.	Discuss the control sequence for execution of instruction ADD (R3), R1.	06	L2	CO4		
	c.	Describe the organization of hardwired control unit.	06	L2	CO4		
OR							
Q.10 a. Explain multiple bus/three bus organization with a neat diagram.		10	L2	CO5			
Q.10	b.	What is microprogrammed control? Explain its basic organization with	10	L2	CO5		
		suitable diagram and example.					

* * * *