

18EC54

Fifth Semester B.E. Degree Examination, Dec.2023/Jan.2024 Information Theory and Coding

Time: 3 hrs.

ACHA

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Derive an expression for average information content of symbols in long independent sequences. (04 Marks)
 - b. Find the relationship between Hartleys, nats and bits.

(06 Marks)

- e. For the Markov source of Fig. Q1 (c), find (i) Entropy of each state.
 - (ii) Entropy of the source.
 - (iii) G_1 , G_2 . Also show that $G_1 > G_2 > H(s)$

(10 Marks

Fig. Q1 (c)

OR

- a. A binary source is emitting an independent sequence of 0's and 1's. With probabilities 'P' and '1 P' respectively. Plot the entropy of the source versus 'P'. (04 Marks)
 - b. A code is composed of dots and dashes. Assuming that a dash is 3 times as long as a dot and has one-third the probability of occurrence, calculate
 - (i) The information in a dot and a dash.
 - (ii) The entropy of dot-dash code.
 - (iii) The average rate of information if a dot lasts for 10 m-sec and this time is allowed between symbols. (08 Marks)

- c. Consider the state diagram of Markov source of Fig. Q2 (c).
 - (i) Compute the state probabilities
 - (ii) Find entropy of each state.
 - (iii) Find the entropy of the source.

(08 Marks)

Module-2

3 a. Apply Shannon's encoding (binary) algorithm to the following set of messages and obtain code efficiency and redundancy.

m_1	m_2	m_3	m ₄	m_5
1	1	- 3	1	3
8	16	16	4	8

(10 Marks)

b. A discrete memoryless source has an alphabet of seven symbols with probabilities for its output, as described below.

1							
Symbol	S_0	S_1	S_2	S_3	S ₄	S_5	S ₆
Probability	0.25	0.25	0.125	0.125	0.125	0.0625	0.0625

Compute Shannon-Fano code for this source. Find coding efficiency.

(10 Marks)

OR

4 a. Consider a zero-memory source with

$$S = \{S_1, S_2, S_3, S_4, S_5, S_6, S_7\}, P = \{0.4, 0.2, 0.1, 0.1, 0.1, 0.05, 0.05\}$$

- (i) Construct a binary Huffman code by placing the composite symbol as low as possible. Find the coding efficiency.
- (ii) Repeat (i) by moving the composite symbol as high as possible and find the coding efficiency.

 (12 Marks)
- b. Explain the properties of codes. Also draw the code-property circle diagram.

(08 Marks)

Module-3

5 a. A binary symmetric channel has the following noise matrix with source probabilities of $P(X_1) = \frac{2}{3}$ and $P(X_2) = \frac{1}{3}$,

$$p\left(\frac{Y}{X}\right) = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} \end{bmatrix}$$

- (i) Determine H(x), H(y), H(x, y), H(Y/X), H(X/Y) and I(X, Y).
- (ii) Find the channel capacity.
- (iii) Find channel efficiency and redundancy.

(08 Marks)

18EC54

b. What is mutual information? Explain its properties.

(06 Marks)

c. Consider the Binary Symmetric channel with channel matrix given by,

$$p\left(\frac{Y}{X}\right) = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} \end{bmatrix}$$

Find the channel capacity using Muroga's method.

(06 Marks)

OR

- 6 a. Explain the following:
 - (i) Symmetric / Uniform channels.
 - (ii) Binary symmetric channels.
 - (iii) Binary Erasure channels.

(06 Marks)

- b. An analog signal has a 4 kHz bandwidth. The signal is sampled at 2.5 times the Nyquist rate and each sample quatized into 256 equally likely levels. Assume that the successive samples are statistically independent.
 - (i) Find the information rate of this source.
 - (ii) Can the output of this source be transmitted without errors over Gaussian channel of bandwidth 50 kHz and the signal to noise ratio (SNR) of 20 dB?
 - (iii) If the output of this source is to be transmitted without errors over an analog channel having (S/N) of 10 dB, compute the bandwidth requirement of the channel.

(08 Marks) (06 Marks)

c. State Shannon-Hartley law. Explain the implications of Shannon-Hartley law.

Module-4

- 7 a. Define (i) Hamming weight
- (ii) Hamming distance
- (iii) Minimum distance

(06 Marks)

- b. For a systematic (6, 3) Linear Block Code, $G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$
 - (i) Find all the code vectors.
 - (ii) Draw the encoder circuit.
 - (iii) Find minimum distance.

(08 Marks)

c. For a systematic (7, 4) Linear Block Code, the parity matrix 'P' is given as,

$$\mathbf{P} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

- (i) Draw the encoder circuit.
- (ii) A single error has occurred in each of these received vectors. Detect and correct errors.
 - (a) $R_A = [01111110]$
 - (b) $R_B = [1011100]$

(06 Marks)

OR

8 a. The parity checkbits of a (7, 4) Hamming code are generated by,

 $C_5 = d_1 + d_3 + d_4$

 $C_6 = d_1 + d_2 + d_3$

 $C_7 = d_2 + d_3 + d_4$

where d₁, d₂, d₃ and d₄ are message bits.

- (i) Find the generator matrix 'G' and the parity check matrix 'H' of this code.
- (ii) Draw the syndrome calculation circuit for this code.
- (iii) Check for $GH^T = 0$

(08 Marks)

h A (15, 5) linear cyclic code has generator polynomial $g(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}$,

(i) Draw the encoder for this code.

- (ii) Tabulate the contents of shift registers of the encoder for the message polynomial, $D(x) = 1 + x^2 + x^4$ (06 Marks)
- c. Design an encoder for the (7, 4) cyclic code generated by $g(x) = 1+x+x^3$ and verify its operation using the message vectors $(1\ 0\ 0\ 1)$ and $(1\ 0\ 1\ 1)$. (06 Marks)

Module-5

- 9 a. Consider the (3, 1, 2) convolutional code with $g^{(1)} = (1 \ 1 \ 0)$, $g^{(2)} = (1 \ 0 \ 1)$ and $g^{(3)} = (1 \ 1 \ 1)$.
 - (i) Draw the encoder block diagram.
 - (ii) Find the generator matrix.
 - (iii) Find the code word corresponding to the information sequence (1 1 1 0 1) using time-domain and transform-domain approach. (12 Marks)
 - b. For the (2, 1, 2) convolutional encoder, described by $g^{(1)} = (1 \ 1 \ 1)$ and $g^{(2)} = (1 \ 0 \ 1)$,
 - (i) Draw the encoder circuit.
 - (ii) Find the generator matrix.
 - (iii) Find the output sequence for the information sequence d = 1 0 0 1 1 using time domain and transform-domain approach. (08 Marks)

OR

- 10 a. For the (2, 1, 2) convolutional encoder described by $g^{(1)} = (1 \ 1 \ 1)$ and $g^{(2)} = (1 \ 0 \ 1)$,
 - (i) Draw the state table.
 - (ii) Write the state transition table.
 - (iii) Draw the state diagram.

(06 Marks)

- b. For the (3, 1, 2) convolutional encoder, with $g^{(1)} = (1 \ 1 \ 0)$, $g^{(2)} = (1 \ 0 \ 1)$ and $g^{(3)} = (1 \ 1 \ 1)$.
 - (i) Draw state table, state transition table and state diagram.
 - (ii) Construct the code-tree and find the output sequence for the message sequence (1 1 1 0 1) (14 Marks)

* * * * *