CBCS SCHEME

USN

18EC55

Fifth Semester B.E. Degree Examination, Dec.2023/Jan.2024 **Electromagnetic Waves**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Derive the expression for electric field intensity due to finite line charge. (08 Marks)
 - (04 Marks) Derive the relation between D and E.
 - Determine the force exerted on Q_2 by Q_1 , if the charges are located : $Q_1 = 3 \times 10^{-4}$ C at M(1, 2, 3) and $Q_2 = -10 \times 10^{-4}$ at N(2, 0, 5) in a vaccum. (08 Marks)

- State Coulomb's law and prove the expression for electric field intensity due to several (08 Marks) charge.
 - b. Derive the expression for the force due to several charges. (04 Marks)
 - c. A charge $Q_1 = 25 \text{nC}$ is located at A(4, -2, 7) and a charge $Q_2 = 60 \text{nC}$ is located at B(-3, 4, -2). Find \vec{E} at C(1, 2, 3). Also find the direction of electric field. Given $\epsilon_0 = 8.854 \times 10^{-12} \text{F/m}.$ (08 Marks)

Module

State and prove divergence theorem.

(06 Marks)

- b. Determine the volume charge density, if the field $\vec{D} = \frac{10\cos\theta\sin\phi}{a\hat{r}} a\hat{r} c/m^2$. (07 Marks)
- c. Calculate the divergence of \overrightarrow{D} at specified points if

$$\vec{D} = \frac{1}{Z^2} [10xyz] a\hat{x} + 5x^2z a\hat{y} + (2z^3 - 5x^2y) a\hat{z} \text{ at } P(-2, 3, 5).$$

Derive the expression for equation of continuity.

(05 Marks)

(07 Marks)

b. Give the relation between E and V.

(05 Marks)

- Given potential field, $V = 2x^2y 5z$ and a point (-4, 3, 6) find several numerical values at P
 - iii) D ii) É and the direction iv) ρ_v. (10 Marks) i) Potential V

Module-3

- (05 Marks) a. Derive the expression for Poisson's equation.
 - Determine whether the pontifical field $V = x^2 y^2 + z^2$ satisfy the laplace equation. (05 Marks)
 - c. Given vector $\overrightarrow{E} = (12yx^2 6z^2x) a\hat{x} + (4x^3 + 18zy^2) a\hat{y} + (6y^3 6zx^2) a\hat{z}$ check whether it (10 Marks) represents a possible electric field.

OR

6 a. State and prove Ampers circuit low.

(08 Marks)

b. Explain the concepts of scalar and vector magnetic potential.

(06 Marks)

c. Given: $\overline{H} = [y\cos(\alpha x)\hat{a}x + (y+e^x)\hat{a}z]$. Find current density vector over the yz plane.

(06 Marks)

Module-4

a. Derive the expression for force on differential current element.

(08 Marks)

b. Define magnetization and Magnetic moment.

(04 Marks)

c. Two differential current elements,

 $I_1 dL_1 = 3 \times 10^{-6} \text{ a } \hat{y} \text{ Am at } P_1(1, 0, 0) \text{ and}$

 $I_2 dL_2 = 3 \times 10^{-6} (-0.5a \hat{x} + 0.4 \hat{y} + 0.3 a \hat{z})$ Am at $P_2(2, 2, 2)$ are located in a free space. Find the vector force exerted on $I_2 dL_2$ by $I_1 dL_1$. (08 Marks)

OR

8 a. State and explain Lorentz force equation.

(08 Marks)

b. Define Magnetic pole strength and Magnetic field intensity.

(04 Marks)

c. A point charge Q = 18nC has a velocity of 5×10^6 m/s in the direction :

 $\stackrel{\rightarrow}{a} = 0.6\,a\hat{x} + 0.75\,a\hat{y} + 0.3\,a\hat{z}$. Calculate the magnitude of the force exerted on the charge by the field :

- i) $\overrightarrow{B} = -3 a \hat{x} + 4 a \hat{y} + 6 a \hat{z}$ MT
- ii) $\overrightarrow{E} = -3 a \hat{x} + 4 a \hat{y} + 6 a \hat{z} \text{ KV/m}$
- ii) \overrightarrow{B} and \overrightarrow{E} acting together.

(08 Marks)

Module-5

9 a. Write a Maxwell's equations in point form and integral form.

(06 Marks)

- b. Find the frequency at which conduction current density and displacement current density are equal in a medium with $\sigma = 2 \times 10^4 \text{ T/m}$ and $\epsilon_r = 81$. (06 Marks)
- c. A circular cross section conductor of radius 1.5mm carries a current $i = 5.5 sin (4 \times 10^{10t}) \mu A$. Find the magnitude of displacement current density if $\sigma = 35 \sigma/m$ and $\epsilon_r = 10$. (08 Marks)

OR

10 a. Derive the expression for uniform plane wave for a free space.

(08 Marks)

b. State and prove Poynting theorem.

(06 Marks)

- c. The magnetic field intensity of a uniform plane wave in air is 20/m in \overline{ay} direction. The wave is propagating in \overline{az} direction at an angular frequency of 2×10^9 rad/s. Find
 - i) Phase shift constant
 - ii) Frequency
 - iii) Wave length
 - iv) Amplitude of electric field intensity.

(06 Marks)

* * * * *