GBGS SCHEME | | 4.5 | 2.8 | | | | | _ | efficie. | 1 . 1 | | |-------------------|------|-------------|-------|---------|-----|------------|---|--|-------|--------| | | 0.00 | - 12 | 5, 0 | | | | | - P. W. | | | | | 2 78 | | 1 | N 6 | 1 | | | and, The | | 210051 | | TICAL | | A 1971 12 1 | | | | 51 | | The state of s | | LIEU34 | | USIN | | 100 | 8 | 3 1 2 5 | | | | Albert William | | | | | | - San 332 | 6. 1 | la e f | 1 1 | F | |
- The second second | | | | The second second | | N | 1 100 | | 4.5 | 10 Page 20 | | | | | # Fifth Semester B.E. Degree Examination, Dec.2023/Jan.2024 Electromagnetic Waves Time: 3 hrs. Max. Marks: 100 Note: Answer any FIVE full questions, choosing ONE full question from each module. # Module-1 1 a. State and explain coulomb's law of force between two point charges in vector form. (06 Marks) - b. Convert point P(1, 3, 5) to cylindrical and spherical co-ordinates. Also write the equations for differential surface, differential volume for rectangular, cylindrical and spherical systems. (06 Marks) - c. Find electric field intensity at P(1, 1, 1) caused by 4 identical 3nc charges are located at $P_1(1, 1, 0)$, $P_2(-1, 1, 0)$, $P_3(-1, -1, 0)$ and $P_4(1, -1, 0)$. (08 Marks) #### OR - 2 a. Define electric field intensity. Derive an expression for electric field intensity due to infinite line charge. (08 Marks) - b. A point charge of 50nc each are located at A(1, 0, 0), B(-1, 0, 0), C(0, 1, 0) and D(0, -1, 0) in free space. Find the total force on the charge at A. Also find \overline{E} at A. (06 Marks) - c. A uniform line charge $\rho_L = 25$ nc/m lies on the line x = -3m, y = 4m in freespace. Find electric field intensity at a point (2, 3, 15)m. (06 Marks) ### Module-2 3 a. State and prove Gauss's law. (06 Marks) - b. Evaluate both sides of the divergence theorem for the defined plane in which $1 \le x \le 2$, $2 \le y \le 3$, $3 \le z \le 4$, if $\overline{D} = 4x \, \hat{a}_x + 3y^2 \, \hat{a}_y + 2z^3 \, \hat{a}_z \, c/m^2$. (10 Marks) - c. Derive the point form of continuity of current equation. (04 Marks) #### OR 4 a. Obtain the expression for the work done in moving a point charge in an electric field. (06 Marks) - b. Given that the field $\overline{D} = \frac{5\sin\theta \cos\phi}{r} \hat{a}_r \text{ c/m}^2$. Find: i) Volume charge density ii) The total electric flux leaving the surface of the spherical volume of radius 2m. (08 Marks) - c. Define potential difference. Derive the expression for potential field of a point charge. (06 Marks) ### Module-3 5 a. State and prove uniqueness theorem. (08 Marks) (B.S. Marks) b. Define Stoke's theorem. Use this theorem to evaluate both sides of the theorem for the field $\overline{H} = 6xy\,\hat{a}_x - 3y^2\,\hat{a}_y$ A/m and the rectangular path around the region, $2 \le x \le 5$, $-1 \le y \le 1$ and z = 0. Let the positive direction of ds be \hat{a}_z . (12 Marks) #### OR - 6 a. Solve the Laplace's equation for the potential field in the homogeneous region between the two concentric conducting spheres with radii 'a' and 'b' such that b > a, if potential v = 0 at r = b and v = v₀ at r = a. Also find the capacitance between concentric spheres. (08 Marks) - b. Derive the expression for magnetic field intensity due to infinite long straight conductor using Biot-Savart's law. (06 Marks) - c. Determine whether or not the following potential fields satisfy the Laplace's equation: i) $V = 2x^2 - 3y^2 + z^2$ ii) $V = r \cos\theta + \phi$ (06 Marks) # Module-4 7 a. Derive an expression for Lorentz Force equation. (06 Marks) - b. If $\overline{B} = 0.05x$ \hat{a}_y Tesla in a material for which $\pi_m = 2.5$, Find: i) μ_r ii) μ_r iii) \overline{H} iv) \overline{M} v) \overline{J} vi) \overline{J}_b . - c. Derive the expression for the force between two differential current elements. (06 Marks) #### OR - 8 a. Derive the expression for the boundary conditions between two magnetic medias. (10 Marks) - b. Calculate the magnetization in magnetic material where: i) $\mu = 1.8 \times 10^5$ H/m and M = 120 A/m - ii) $\mu_r = 22$, there are 8.3×10^{28} Atoms/m³ and each atom has a dipole moment of 4.5×10^{-27} A/m² - iii) $B = 300 \mu T$ and $\chi_m = 15$. .. (06 Marks) c. Briefly explain the forces on magnetic materials. (04 Marks) # Module-5 9 a. List and explain Maxwell's equations in point form and integral form. (08 Marks) - b. Given $\overline{E} = E_m \sin(wt \beta z) \hat{a}_y \text{ v/m. Find: i) } \overline{D} \text{ ii) } \overline{B} \text{ iii) } \overline{H} \text{ . Sketch } \overline{E} \text{ and } \overline{H} \text{ at } t = 0.$ - c. Find the frequency at which conduction current density and displacement current density are equal in a medium with $\sigma = 2 \times 10^4$ mho/m and $\epsilon_r = 81$. (04 Marks) #### OR 10 a. State and prove Poynting theorem. (08 Marks) - b. For the given medium $\epsilon = 4 \times 10^{-9}$ F/m and $\sigma = 0$, find 'K' so that $\overline{E} = (20y kt)\hat{a}_x / m$ and $\overline{H} = (y + 2 \times 10^6 t) \hat{a}_z / M = (06 Marks)$ - c. A uniform plane wave of frequency 10MHz travels in positive direction in a lossy medium with $\epsilon_r = 2.5$, $\mu_r = 4$ and $\sigma = 10^3$ T/m. Calculate α , β , γ and η , λ . (06 Marks) * * * * *