	CBCS	SCI	EWE

18EC63

Sixth Samester R.F. Degree Fy

Sixth Semester B.E. Degree Examination, Dec.2023/Jan.2024 Microwave and Antennas

Time: 3 hrs. Max. Marks: 100

Tir	ne:	3 hrs. Max. Mark	is: 100			
	Note: Answer any FIVE full questions, choosing ONE full question from each module.					
1	a. b.		08 Marks) mm for			
		$1\frac{3}{4}$ mode. Calculate $P_{R \text{ max}}$ and corresponding repeller voltage for a beam current of 18mA.				
	c.		06 Marks) 06 Marks)			
		OR				
2	a.	Define Reflection coefficient and transmission coefficient of a transmission line. D expression for each of them.	erive and 08 Marks)			
	b.		e voltage 04 Marks)			
	c.	Mention the characteristics of Smith chart.	08 Marks)			
		Module-2				
3	a. b.		08 Marks) 06 Marks)			
	c.		06 Marks)			
		OR				
4	a.	Write the characteristics of Magic Tee. Derive scattering matrix for Magic Tee. (0	08 Marks)			
	b.	Impedance matrix of a simple device is given by $\begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$. Find its scattering matrix.				
	c.		08 Marks) 04 Marks)			
	٥.	Title a note on i nase sinteris.) TITAL KS)			
		Module-3				
5	a.		06 Marks)			

- b. Discuss different types of losses in Microstrip line. (06 Marks)
- c. Define the following with respect to antenna:
 - i) Directivity
- ii) Antenna beam efficiency
- iii) Field zones
- iv) Effective aperture.

(08 Marks)

OR

- 6 a. Derive the relationship between Maximum effective aperture and Directivity. (06 Marks)
 - b. Show that Maximum effective aperture of a half wave $(\frac{\lambda}{2})$ antenna is $0.13\lambda^2$. (06 Marks)
 - c. Two identical transmitting and receiving antenna with gain of 15dBi at 2.45 GHz are separated by a distance of 3km. If the transmitted power is 20W, then calculate the received power.

 (08 Marks)

Module-4
a. Find the directivity of an antenna whose radiation intensity is given by U = U_m Cos⁴ θ Sin² φ , 0 ≤ θ ≤ π/2 , 0 ≤ φ ≤ 2π. (06 Marks)
b. Derive an expression for the field pattern for 'n' isotropic point sources of same amplitude and phase. (08 Marks)
c. Draw the field pattern of a broadside array with number element (n) = 5 and spacing (d) = λ/2.

OR

- 8 a. Obtain an expression for the field pattern of two isotropic point sources with equal amplitude and phase. Also plot the field pattern. Assume $d = \frac{\lambda}{2}$. (08 Marks)
 - b. Derive an expression for radiation resistance of short electric dipole.
 c. Explain the principle of pattern multiplication.
 (08 Marks)
 (04 Marks)

Module-5

- 9 a. Derive an expression for far field components of small loop antenna. (08 Marks)
 - b. A Coaxial feed pyramidal horn antenna is designed at 915 MHz with aperture A = 50cm and B = 40cm and horn length from neck to mouth = 27.5cm. Assuming efficiency of 72%. Find approximate gain of the horn antenna. (06 Marks)
 - c. A parabolic dish antenna provides a power gain of 50dB at 10GHz with 70% efficiency. Find i) HPBW ii) FNBW iii) Diameter. (06 Marks)

OR

- 10 a. Explain Yagi Uda array with the help of neat diagram. (06 Marks)
 - b. A helical antenna with a flat circular ground plane is to be designed to operate in axial mode for a gain of 26dB_i at 5.8 GHz. Calculate i) Diameter of the helix ii) Minimum number of turns. (08 Marks)
 - c. Find the radiation resistance of circular loop antenna of radius 0.32m, Operating at 1MHz. The radius of a wire used is 0.4mm conductivity of the wire is 57 ms/m and $\mu_r = 1.(06 \text{ Marks})$