

CBCS SCHEME

BEE306A

Third Semester B.E/B.Tech. Degree Examination, Dec.2023/Jan.2024 Digital Logic Circuits

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
1	a.	Define combinational logic circuit. List the various steps in designing the	6	L1	CO1
	 	combinational logic circuit and explain with a block diagram.			
	b.	Explain the canonical minterm and maxterm form with examples.	4	L1	CO1
	c.	Simplify the following Boolean function using K-map and implement using	10	L4	CO1
		basic gates.			
		$P = f(a, b, c, d) = \Sigma m(2, 3, 4, 5, 13, 15) + d(8, 9, 10, 11)$			
		$y = f(a, b, c, d) = \pi m (0, 4, 5, 7, 8, 9, 11, 12, 13, 15).$			
	1	OR			
2	a.	Simplify the following expression using Quine-Mc-clusky menimisation	10	L4	CO ₂
		technique. $Y = f(a, b, c, d) = \Sigma m(7, 9, 12, 13, 14, 15) + d(4, 11)$.			
	b.	Convert the following Boolean function into their proper canonical form and	6	L4	CO2
		represent in decimal notation.			
		i) $f = ab + bc$			
		ii) f = (x + y)(y + z).			
	c.	Define the following terms:	4	L1	CO2
		i) Literal	-	LI	COZ
		ii) Prime implicates			
		iii) Essential prime implicants			
		iv) Maxterm.			
·		Module – 2			
3	a.	With the aid of general structure, clearly distinguish between a decoder and an	5	L2	CO2
		encoder.			
	b.	Design a combinational logic circuit that will convert a BCD digit to Excess-3.	10	L2	CO2
		Construct the truth table and simplify each output equation using K-map and			
		implement using basic gates.			
	c.	Design a 4 to 16 line decoder by cascading 2 to 4 line decoders which has the	5	L5	CO2
		active low output and active low enable input.			
	•	OR			
4	a.	Design a two-bit magnitude comparator with the help of truth table and	10	L5	CO2
		simplify the output equations using K-maps. Draw a logic diagram.			
	b.	Implement the following Boolean function using 4:1 MUX, f(a, b, c) =	5	L5	CO2
		$\Sigma m(1, 3, 5, 6)$. Take b, c as select lines.			
	c.	Design a full adder by constructing the truth table and simplify the output	5	L5	CO2
		equations.			
		Module – 3			
5	a.	Explain the operation of master-Slave JK-flip-flop with a neat logic diagram	10	L2	CO3
		functional table, logic symbol and timing diagram.			
	b.	Explain the operation of SR Latch act as a switch debouncer with the help of	6	L2	CO3
		timing diagram.			
	c.	Obtain the characteristic equation of JK – flip-flop and D flip-flop.	4	L4	CO3
	1	1 of 2			

]	BEE	306A
		OR			
6	a.	Draw a neat diagram and explain the working of positive edge triggered D-flip-flop with functional table, logic symbol and timing diagram.	10	L2	CO3
	1	Differentiate sequential logic circuit and combinational logic circuit.	4	L2	CO3
	b.	Explain the operation of gated SR latch using NAND gates.	6	L2	CO3
	C.	Module – 4			
_		With a neat logic diagram, explain the 4-bit universal shift register using D-	10	L2	CO ₄
7	a.	With a neat logic diagram, explain the 4-bit universal sint legister damp b	10		
		flip-flops and a 4:1 MUX. Write a mode control and register operation.	10	L2	CO4
	b.	Explain the working of 4-bit binary ripple counter using a positive edge	10		004
		trigger T-flip-flop with an enable line and relevant timing diagram.			
0.0000		OR O. 1. 46. 7. 5 and arrest	12	1.5	CO4
8	a.	Design a synchronous counter to count the sequence 0, 1, 4,6, 7, 5 and repeat	12	L5	CO4
		using positive edge trigged JK Flip-flops.	-	T. C	CO.4
	b.	Design a 4-bit mod-8 Johnson counter and also write the count sequence table.	8	L5	CO4
		Module – 5			
9	a.	Explain Mealy and Moore model in a sequential circuit analysis.	8	L2	CO5
	b.	Design a clocked synchronous sequential network based on the state diagram	12	L4	CO5
	0.	given below Fig.Q9(b) using T-flip-flops.			
		olo			
		10 100			
		May all all all all all all all all all a			
		(o) 00 VII) 1/1			
		10/			
		1/0 10			
		F' - 00(1)			
		Fig.Q9(b)	ــــــــــــــــــــــــــــــــــــــ		
		OR		7.4	00
10	a.	Write short notes on:	8	L4	CO
		i) ROM			
		ii) RAM			
		iii) EPROM	ì		
		iv) Memory Flash,			
	b.	Analyse the following sequential logic circuit as shown in Fig.Q10(b) below.	12	L4	CO
		Obtain the excitation and output equation, transition table and state table. Also			
		draw a state diagram.			
		d 17 1	*		
		CKT a	- 11		
		Fig.Q10(b)			