15EE46

Fourth Semester B.E. Degree Examination, Dec.2023/Jan.2024 Operational Amplifiers and Linear ICs

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. What is an op-amp? Explain the operation of block diagram representation of a typical op-amp. (05 Marks)
 - b. Briefly explain the difference between the DC and AC amplifiers. (03 Marks)
 - With a neat circuit diagram, explain the operation of the non-inverting amplifier with feedback. Derive an expression for a closed loop voltage gain (A_F) and input resistance with feedback (R_{iF}).

OR

- 2 a. Explain the following electrical parameter:
 - i) Input offset voltage
 - ii) CMRR
 - iii) Slew rate.

(06 Marks)

b. What are the characteristics of an ideal op-amp?

(04 Marks)

c. Use a 741 op-amp, design a summing amplifier to add three DC input voltages. The output voltage (V_0) of this circuit must be equal to two times the negative sum of the input.

(06 Marks)

Module-2

- 3 a. Draw the circuit diagram derive expression for the voltage gain and phase angle of first order low-pass Butterworth filter. (04 Marks)
 - b. Design a second order high-pass filter circuit to have cutoff frequency of 1KHz, Shows the nature of frequency response. (06 Marks)
 - c. Using LM 317 IC regulator, design an adjustable voltage regulator to satisfy the following specification output voltage $V_0 = 5V$ to 12V, output current $I_0 = 1.0A$. ($V_{ref} = 1.25V$, $I_{adj} = 100\mu A$).

OR

- a. Sketch the circuit of a voltage follower regulator. Explain the circuit operation. (04 Marks)
 - b. Explain the following performance parameter of voltage regulator:
 - i) Line regulation
 - ii) Load regulation
 - iii) Ripple rejection.

(06 Marks)

c. Using a 741 op-amp, design a single stage band filter to have a voltage gain of 1 and a passband from 300Hz to 30 KHz. (06 Marks)

Module-3

- 5 a. With a neat circuit diagram and relevant waveforms, explain the operation of a triangular /rectangular waveform generator which has frequency and duty cycle controls. (10 Marks)
 - b. Design a non-inverting Schmitt trigger circuit to have UTP = +3V and LTP = -5V. Use a 741 ICs with supply $V_{CC} = \pm 15V$, choose $I_{Bmax} = 500nA$. (06 Marks)

OR

- 6 a. Draw the circuits of an op-amp inverting zero-crossing detector and a voltage level detector.

 (04 Marks)

 Explain operation of each circuits.
 - b. Design a RC phase shift oscillator to have an output frequency of 3.5KHz. Use a 741 op-amp with a voltage supply of ±12V. (06 Marks)
 - c. With a neat circuit diagram and waveforms, explain the operation of a Wein bridge oscillator. (06 Marks)

Module-4

- 7 a. Sketch the circuit of a non-saturating half wave precision rectifier and explain the operation of the circuit. Draw the input output waveform. (04 Marks)
 - b. Draw a neat circuit diagram, explain the working operation of R-2R ladder DAC. Shows the graph of output versus inputs.

 (08 Marks)
 - c. With a neat circuit diagram, explain the working of voltage follower type peak detector.
 (04 Marks)

OR

- 8 a. Design a adjustable peak clipping circuit to clip at approximately ±(3V to 5V). The circuit is to have unity voltage gain before clipping. (08 Marks)
 - b. Briefly describe the operation of successive approximation analog to digital converter with neat block diagram. (08 Marks)

Module-5

- 9 a. What is Phase Locked Loop (PLLs)? Explain the working of the building blocks of PLL.
 - (08 Marks) (08 Marks)
 - b. With a neat circuit, explain the functional diagram of IC 555 timer.

OR

- 10 a. With a neat sketch, explain the operation of a monostable multivibrator using IC555 timer and also draw the input and output waveforms. (06 Marks)
 - b. Using IC555 timer, design an astable multivibrator having an output frequency of 10KHz with a duty cycle of 25%. (06 Marks)
 - c. Explain the concepts of a low pass filter and VCO in Phase Locked Loop. (04 Marks)

* * * * *