GBGS SCHEME

We did to									
a Same		40							
TICN		a la come	1		1 1				
USIA	12.7	7	W 100						
S. 3. W.	100	100	10						
No.	15	7	60						

18EE733

Seventh Semester B.E. Degree Examination, Dec.2023/Jan.2024 Integration of Distributed Generation

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. List out various energy sources used in the distributed generation system and also list out the properties of Solar power. (10 Marks)
 - b. Discuss the following aspects with respect to solar power generation:
 - (i) Space requirements
 - (ii) Photovoltaics.

(10 Marks)

OF

- 2 a. Briefly explain the different MPPT algorithm incorporate within solar power and current voltage characteristics of PV cell. (10 Marks)
 - b. Briefly explain options for space heating aspects of combined heat and power generation and properties of small hydro large hydro power plants. (10 Marks)

Module-2

- 3 a. Explain with a neat diagram, the method of direct machine coupling with the grid and partial power electronics coupling to the grid. (10 Marks)
 - b. Discuss about primary and secondary aims of the power system and also list out various types of power quality issues in power system. (10 Marks)

OR

- 4 a. Define hosting capacity and discuss hosting capacity approaches in distributed generation.
 (10 Marks)
 - b. Explain impact of distributed generation and meshed operation in overloading and losses.
 (10 Marks)

Module-3

- 5 a. List out the possible solution to increase the hosting capacity for distributed generation and explain any one solution. (10 Marks)
 - b. Define over voltage margin and explain hosting capacity approach for over voltage.

(10 Marks)

OR

- 6 a. With an example, explain two stage boosting concerned to voltage variations and write the general expression for two stage boosting. (10 Marks)
 - Discuss the need for probabilistic methods for design of distribution feeder and write the probability density and distribution function. (10 Marks)

Module-4

- Discuss power quality disturbances in distributed generation and explain how these impact (10 Marks) on distributed generation.
 - Explain how the hosting capacity can be increased by allowing higher voltages. (10 Marks)

- OR

 Define voltage flicker and explain fast voltage fluctuation in wind power and solar power. 8
 - Explain the voltage balance in weaker transmission system and stronger distribution system. (10 Marks)

Module-5

- Explain the generation of low frequency harmonics due to induction generator used in wind 9 power generation. (10 Marks)
 - Explain the parallel and series resonance concerned to harmonics. (10 Marks)

OR

- Explain about the balanced and unbalanced voltage dips in synchronous machines. (10 Marks) 10
 - Explain how to increase the hosting capacity by passive harmonic filter and power electronic (10 Marks) converter.