

CBCS SCHEME

18MAT21

Second Semester B.E. Degree Examination, Dec.2023/Jan.2024 **Advanced Calculus and Numerical Methods**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

- Find grade ' ϕ ' when ϕ is given by $\phi = 3x^2y y^3z^2$ at the point (1, -2, -1).
 - A vector field is given by $\vec{A} = (x^2 + xy^2) \hat{i} + (y^2 + x^2y)j$. Show that the field is irrotational.
 - Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at (2, -1, 2)

- Verify Green's theorem in the plane for $\int (xy + y^2)dx + x^2dy$, where C is the closed curve bounded by y = x and $y = x^2$.
 - b. Evaluate by Stokes theorem $\oint yzd_x + zxd_y + xyd_z$, where C is the curve $x^2 + y^2 = 1$, $z = y^2$.
 - c. Using the divergence theorem, evaluate $\iint_{\mathbb{C}} \vec{F} \cdot \hat{n} \, ds$, where $\vec{F} = x^3 \hat{i} + y^3 \hat{j} + z^3 \hat{k}$ and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ (07 Marks)

- a. Solve $\frac{d^3y}{dx^3} + y = 0$. (06 Marks)
 - b. Solve $y'' 4y' + 13y = \cos 2x$. (07 Marks)
 - c. Solve $\frac{d^2y}{dx^2} + y = \tan x$ by the method of variation or parameters. (07 Marks)

- a. Solve $x^2y'' xy' xy' + 2y = x$ by Cauchy method. b. Solve $(2x + 1)^2 y'' 2(2x + 1)y' 12y = 6x$ by Lagendre's method. (06 Marks)
 - (07 Marks)
 - c. A particle moves along the x axis according to the law $\frac{d^2x}{dt^2} + 6 \frac{dx}{dt} + 25x = 0$. If the particle is started at x = 0 with an initial velocity of 12 ft/sec to the left, determine nets. (07 Marks)

Module-3

- a. Form partial differential equation by eliminating the arbitrary constants 'a' & 'b'. $z = ax^2 + by^2$. (06 Marks)
 - b. Form partial differential equation by eliminating the arbitrary function 'f'. $z = x^n f(\frac{y}{x})$ (07 Marks)
 - Solve $\frac{\partial^3 z}{\partial x^2 \partial y} = \sin(2x + 3y)$. (07 Marks)

a. Solve $\frac{\partial^3 z}{\partial x^2} + 4z = 0$. Given that when x = 0, $z = e^{2y}$ and $\frac{\partial z}{\partial x}$ (06 Marks)

b. Solve $p \cot x + q \cot y = \cot z$.

(07 Marks)

Find solution of one – dimensional heat equation:

$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{c}^2 \cdot \frac{\partial^2 \mathbf{y}}{\partial \mathbf{x}^2}.$$

(07 Marks)

Discuss the convergence of $\sum_{n=1}^{\infty} \frac{(n+1)^n x^n}{n^{n+1}}$ (06 Marks)

Test for convergence of the series $\frac{1^2}{2} + \frac{2^2}{2^2} + \frac{3^2}{2^3} + \frac{4^2}{2^4}$ (07 Marks)

Test the positive series +=1+2+3+(07 Marks)

Solve Bessel's differential equation leading to $J_n(x)$. Express the polynomial $f(x) = 4x^3 - 2x^2 - 3x + 8$ in terms of Legendre polynomials. (06 Marks) 8

(07 Marks)

Using Rodrigues's formula, obtain expressions for $P_0(x)$, $P_1(x)$, $P_2(x)$, $P_3(x)$. (07 Marks)

Module-5

Using Newton's forward interpolation formula, find y at x = 8 from the following table:

	_	-	10	100	20	25
X :	0	5	10	10	20	25
y:	7	11	14	18	24	32

(06 Marks)

Using Newton's divided difference formula, evaluate f(8) and f(15), given

l.	x:	4	5	7	10	11	13	
,	f(x):	48	100	294	900	1210	2028	

(07 Marks)

Find a real root of the equation $f(x) = x^3 - 2x - 5 = 0$ by Regula Falsi method correct to three (07 Marks) decimal places.

a. Evaluate $\int_{-1}^{6} \frac{dx}{1+x^2}$ by using Weddle's Rule.

(06 Marks)

b. Evaluate $\int \log_{10}^{x} dx$ taking 6 subintervals correct to four decimal places by Simpson's

(07 Marks)

c. Use Newton – Raphson method to find a real root of the equation $x e^{x} - 2 = 0$ correct to (07 Marks) three decimal places.