Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

50, will be treated as malpractice.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8

Time: 3 hrs.

Note: Answer any FIVE full questions,
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Engineering Mathematlcs -1

Module-1
Solve : (D*+2D + 1)y = sin 2x
Solve : (D’ +6D*+ 11D+ 6)y=¢"+ 1
By the method of undetermined coefficients solve:
D’ +4)y=e”

nf OR
Solve : (D ~ 6D 9)y 663" + 7
Solve : (D 4D 4y = 8(e + sin 2x)
By the method of variation of parameters solve:
(D +.1)y =sec x

-Module-2
Solve : y "+ xy' + 9y = 3x” + sin(3 log x)
Solve : yp*+ (x—y)p —x = 0 :
Solve : (px—y)(py + x) “‘a p by taking x*=X and V=Y

OR
Solve : (x+ 1 Yy + (x )y +y=2 sm[log (1 +x)]
Solve : xyp” — (x2 +y)p+xy=0 -

Obtain general solution and singular selutlon of xp*—py+ kp +a=0

Module-3

Obtain pamal dxffercntlal cquatlon by chmmatmg f and g from the relation

2 -
Solve : %— a'z=0 gnder the conditions z =0 when x = 0 and L asiny when x =0,

Derive an expression for the one dimensional heat equation.

Form a paﬁlal«:dlfferential equation from ¢(x +y +z, xy + =0
: ;

Solve :

=sinxsiny

when y =2n+1)n/2

Use the method of separation of variable to solve the wave equation
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Module-4
Evaluate by changing the order of integration

j J' dx dy (06 Marks)
0y
1 z X+Z W,
Evaluate : I J. J' (x+y+2z) dydxdz """" 5 (07 Marks)
-1 0 x-z .
Prove that : ’» Jn  using deﬁmuon of n. (07 Marks)
OR
Evaluate
j- _[ e ) gx dy" by changing into polar coordinates. (06 Marks)
- " | X2 y2 !
Find the area of anellipse —+ el 1 bydouble integration. (07 Marks)
.
Prove t{hata:ﬁ(hi, n) = mi " (07 Marks)

‘Module-5

Find: (1) L[tcos2t]

(1) L[mcoszt —t— COS3t] (06 Marks)
A . E for 0<t<
A periodic function of period 2a is deﬁncd by f(t) = K" - .
‘ N —E forra<t<2a
Show that. Lff (t“)] = Etanh( 5 ) where E 1s a constant. (07 Marks)

P, 6y + 9y =12 suby::ct to the COIldlthl‘lS y(0) =0, y'(0) =0 by using Laplace

(07 Marks)
V ORs,
“Find L —is’i?——-—; (06 Marks)
(s+2)(s+1)
Find L 1PN by usiﬁg C(;nvolution theorem. (07 Marks)
(s +a)(s+b)
Express the function in terms of unit step function and hence find their Laplace transform
I, O0<t< ]
where f(t)=4{t, l<t<2 (07 Marks)
thh t>2
k sk sk ok ok
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