

USN

18MAT41

Fourth Semester B.E. Degree Examination, Dec.2023/Jan.2024 Complex Analysis, Probability and Statistical Methods

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- State and prove Cauchy Riemann equations in Cartesian form. 1 (07 Marks)
 - Find the analytic function f(z) = u + iv, given that $u v = e^{x}[\cos y \sin y]$. (07 Marks)
 - If y(z) is an analytic function, then show that:

$$\left\{ \frac{\partial}{\partial x} |f(z)| \right\}^2 + \left\{ \frac{\partial}{\partial y} |f(z)| \right\}^2 = |f'(z)|^2. \tag{06 Marks}$$

Determine the analytic function f(z), where imaginary part is $\left(\gamma - \frac{K^2}{\gamma}\right) \sin \theta$, $r \neq 0$. Hence

find the real part 07 f(z). (07 Marks)

- Find the analytic function f(z), whose real part is $u = \log \sqrt{x^2 + y}$ (07 Marks)
- Show that $f(z) = z^{u}$ is analytic and hence find its derivative. (06 Marks)

Module-2

- Discuss the transformation $w = z^2$. (07 Marks)
 - b. State and prove Cauchy's integral theorem. (07 Marks)
 - $\int_{0}^{\infty} (\bar{z})^{2} dz$, along the real axis up to 2 and then vertically to 2 + i. Evaluate: (06 Marks)

- Evaluate: $\int_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)(z-2)} dz$ where c is the circle |2| = 3. (07 Marks)
 - Find the bilinear transformation that maps the points z = 1, i, -1 onto $w = 0, 1, \infty$. (07 Marks)
 - Evaluate: (2x+iy+1) dz along the straight line joining the points (1,-1) and (2,1).

(06 Marks)

Module-3

- A coin is tossed twice. If x represents the number of heads turning up, find the probability 5 distribution of x. also find its mean and variance. (07 Marks)
 - b. If 2% of the fuses manufactured by a firm are defective. Find the probability that a box containing 200 fuses contains: i) no defective fuses: ii) 3 or more defective fuses. (07 Marks)
 - In a normal distribution, 31% of the items are below 45 and 8% of the items are above 64. Find the mean and standard deviation of the distribution. Given that: A(1.4) = 0.42 and A(0.5) = 0.1915. (06 Marks)

OR

Find the constant K such that

$$f(x) = \begin{cases} Kx^2; & -3 \le x \le 3 \\ o; & \text{otherwise} \end{cases}$$

is a probability density function. Also find

i) $P(1 \le x \le 2)$

ii) $P(x \le 2)$

(07 Marks)

iii) P(x > 1).

b. When a coin is tossed 4 items, find the probability of getting

i) exactly one head

ii) at most 3 heads

(07 Marks)

iii) at least 2 heads. c. If x is an exponential variate with mean 5. Evaluate:

i) P(0 < x <)

ii) $P(-\infty < x < 10)$

(06 Marks)

iii) $P(x \le 0)$ or $(x \ge 1)$.

Module-4

Find the coefficient of correlation and the lines of regression for the following data:

		2	1	5
$\mathbf{x} \mid 1$	2	3	4	3
0	5	3	8	7

(07 Marks)

Fit a curve of the form $y = ax^b$ for the data:

v	1	2	3	4	# 5
Λ	0.5	2	45	8	12.5

(07 Marks)

c. If the equations of regression lines of two variables x and y are x = 19.13 - 0.879 and y = 11.64 - 0.5x. Find the correlation coefficient and the means of x and y.

Compute the rank correlation coefficient for the following data:

te the falls co	Ji Ciaci.	A							
		== 1 =0	61	80	. 75	40	55	64	
x 68	64	75 30	04	60	68	48	50	70	
v 62	58	68 45	81	00	00			(07 N	larks)

b. Fit a parabola $y = a + bx + cx^2$ by the method of least squares to the following data:

	V	-	2	1	5	6	7
X	1	2	3	4	3	2 = =	C A A
-	22	5.2	97	16.5	29.4	35.5	34.4

(07 Marks)

c. Compute the mean values of x and y and the coefficient correlation for the regression lines 2x + 3y + 1 = 0 and x + 6y - 4 = 0.

18MAT41

Module-5

- The joint probability distribution of two random variables x and y is defined by the function $P(x,y) = \frac{1}{27}(2x+y)$, where x and y assume the values 0, 1, 2. Find the marginal distributions of x and y. Also compute E(x) and E(y).
 - b. Fit a Poisson distribution for the following data and test the goodness of fit. Given that (07 Marks) $\Psi_{0.05}^2 = 9.49$ for degrees of freedom 4.
 - c. Write short notes on:
 - i) Null hypothesis
 - ii) Type I and Type II
 - iii) Level of significance

(06 Marks)

Joint probability distribution of two random variables is given by the following data:

	- 7		
y x	-3	2	4
1	0.1	0.2	0.2
3	0.3	0.1	0.1

Find:

- Marginal distributions of x and y
- ii) Cov(x, y)

iii) P(x, y).

(07 Marks)

b. The following are the I·Q's of a randomly chosen sample of 10 boys.

70, 120, 110, 101, 88, 83, 95, 98, 107, 100

Does this data support the hypothesis that the population mean of I-Q's is 100 at 5% level of significance? Given $t_{0.05} = 2.26$.

A sample of 900 items is found to have the mean 3.4. Can it be reasonably regarded as a truly random sample from a large population with mean 3.25 and standard deviation 1.61 at (06 Marks) 5% level of significance? Given $Z_{0.05} = 1.96$ (Two Tailed Test).