CBCS SCHEME

3 1901 1000	and the same of th				
 USN		13			BCIVC103/203

First/Second Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 **Engineering Mechanics**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	What are the basic idealization of engineering mechanics, explain each	7	L2	CO1
	b.	Determine magnitude, direction and position of Resultant for the force system shown in Fig Q1(b) with respect to point 'O'. 1m	10	L3	CO2
	c.	Fig Q1(b) State the principle of transmissibility of forces.	3	L2	CO1
Q.2	a.	State and prove Varignon's theorem of moments.	7	L2	CO1
	b.	Define couple. What are the characteristics of couple?	3	L2	CO2
	c.	The 26kN force is the resultant of two forces, one of which is shown in Fig. 2(c). Determine other force. Fig. 26kN Fig. Q2(c)	10	L3	CO1
		1 of 4			

			В	CIV	C103
		Module – 2		1.2	CO2
Q.3	a.	What are the different types of supports? Explain with the help of neat sketch.	6	L2	CO2
	b.	What are the conditions for equilibrium of concurrent force system? Also explain equilibrant force.	4	L2	CO2
	c.	Calculate tension in the strings. Also calculate angle θ in Fig 3(c) 8 20N Fig Q3(c)	10	L3	CO2
		OR			
Q.4	a.	State and prove Lami's theorem.	6	L2	CO2
	b.	Differentiate statically determinate and indeterminate beams.	4	L3	CO2
	c.	Determine support reaction for the beam shown in Fig Q4(c) 50kN/m 300 Fig Q4(c)	10	L3	CO2
		Module – 3		T 0	600
Q.5	a.	Describe the assumptions made in analysis of truss, by mentioning the types of trusses.	8	L2	CO3
	b	motion to impend? Assume the pulley is smooth and coefficient of friction between contact surfaces is 0.2.	12	L3	CO3
		Fig Q5(b)			
		2 of 4		1	

			D	CIV	C103
Q.6	a.	OR Give step by step procedure need to be followed in method of joints.	8	L2	CO3
		and the state of t			000
	b.	Fig. Q6(b)	12	L3	CO3
		Module – 4			
Q.7	a.	Derive moment of Inertia of semicircle about its base and centroidal axis.	10	L2	CO4
		Fig Q7(b)	10	L3	CO3
		OR			
Q.8	a.	Derive the centroid of a quadrant from first principle.	8	L2	CO4
	b.	Determine the centroid of shaded portion with respect to given axis. Ref Fig Q8(b) Fig Q8(b)	12	L3	CO2

Q.9		Module – 5			
6	a.	Derive all the three basic equations of motion in Kinematics.	6	L2	CO4
	b.	Explain the following with the help of sketch for projectile motion. i) Horizontal range ii) Time of flight iii) Maximum height iv) Angle of projection.	6	L2	CO2
	c.	A body moves in a straight line as equation of motion is given by $S = 2t^3 - 4t + 10$. Determine: i) Time required for body to gain velocity 68 m/s from rest. ii) Acceleration of the body when velocity is 32m/s	8	L3	CO3
		OR	5	L2	CO4
Q.10	a.	Defend the necessity of providing super elevation. How is it provided in the field?	3	Liz	004
	b.	Define displacement, velocity, Distance travelled, speed and acceleration.	5	L2	CO2
	c.	A projectile is fired from the top of cliff 150m height with an initial velocity of 180m/s at an angle of inclination of 30° to horizontal. Determine: i) The greatest elevation above the cliff ii) The great elevation above the ground reached by particle iii) The horizontal distance from the point of projection to the point where projectile strikes the grounds.	10	L3	CO3
		4 of 4			
		4 of 4			