

BAE301

Third Semester B.E./B.Tech. Degree Supplementary Examination,

June/July 2024

Aircraft Materials and Processes

Time: 3 hrs.

USN

OBE

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	Μ	L	С	
Q.1	a.	What are the desirable properties of materials used for aircraft applications?	08	L2	CO1	
		Briefly explain them.				
	b.	Name and explain the requirements that are considered for the selection of	06	L2	CO1	
		materials for airframes.				
	c.	Explain stress-strain curves for ductile and brittle materials.	06	L2	CO1	
OR						
Q.2	a.	Name the different types of material testing machines used and explain them briefly.	08	L2	CO1	
	b.	With a neat sketch explain Bauchinger's effect.	06	L2	CO1	
	c.	Define NDT. Explain ultrasonic flow detection system.	06	L2	CO1	
Module – 2						
Q.3	a.	Name the alloy, which is used for manufacturing majority of fuselage skin,	08	L2	CO2	
		explain properties and applications of the same.				
	b.	Discuss the properties, importance of applications of titanium alloy.	06	L2	CO2	
	c.	Explain carbon-carbon composite and metal matrix composite.	06	L2	CO2	
		OR				
Q.4	a.	Differentiate between cast and wrought alloys. Also explain the properties	08	L2	CO2	
		and application of magnesium and its alloys.				
	b.	Discuss the properties and applications of	06	L2	CO2	
		i) Plastic ii) Glass iii) Rubber				
	c.	Explain the properties and applications of copper and its alloys.	06	L2	CO2	
		Module – 3				
Q.5	a.	Write a note on:	08	L2	CO3	
		i) Nickel based super alloys				
		ii) Cobalt based super alloys	0.6		000	
	b.	Define Maraging Steel? Explain the properties and applications of Maraging Steel.	0,6	L2	CO3	
	c.	Briefly explain Heat resistant steel and Corrosion resistant steels.	06	L2	CO3	
OR						
Q.6	a.	Explain the classification of steel? Also explain the applications of plain	08	L2	CO3	
	1	carbon steels.	0(1.2	C02	
	b.	Write a note on High Speed Steel (HSS)	06	L2	CO3	
	c.	Explain the heat treatment process of Superalloys.	06	L2	CO3	
Q.7	a.	Define ceramic materials. How are they classified? Briefly explain the	08	L2	CO3	
	h	characteristics of ceramic materials.	04	12	CO1	
	b.	Differentiate between thermoplastics and thermosets.	06	L2	CO3	
	c.	Explain the manufacturing and forming methods of metal matrix	06	L2	CO3	
l		composites.				

		OR			
Q.8	a.	Briefly explain the properties and applications of ceramic materials	08	L2	CO3
	b.	Define Cermets. Explain the properties and applications of cermets.	06	L2	CO3
	c.	Write a note on production of carbon/carbon composites.	06	L2	CO3
		Module – 5			
Q.9	a.	Explain the following corrosion protection processes:	10	L2	CO3
		i) Cleaning operations ii) Plating operations			
	b.	What do you mean by destructive and non-destructive testing methods? List	10	L2	CO3
		the different tests on under destructive and non-destructive tests. Explain			
		any one from each test.			
		OR			
Q.10	a.	Define Corrosion. Explain the detection and prevention process of	10	L2	CO3
		corrosion.			
	b.	Explain the following with neat sketch and explanation of any two:	10	L2	CO3
		i) Dye-Penetrant test ii) Eddy current test			
		iii) X-ray radiography iv) Ultrasonic testing			

* * * * *

J of J