

June/July 2024

Fluid Mechanics

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	Μ	L	С
Q.1	a.	Define mass density, specific gravity, viscosity and surface tension with	08	L1	CO1
		their S.I. units.			
	b.	Define capillarity. Obtain an expression for capillary rise of a liquid.	06	L1	CO1
	c.	Illustrate the surface tension on liquid droplet and liquid jet.	06	L3	CO1
OR					
Q.2	a.	Derive an expression for force exerted and center of pressure for	07	L2	CO1
		completely submerged inclined plane surface.			
	b.	Derive an expression for force exerted and center of pressure for	07	L2	CO1
		completely submerged curved plane surface.			
	c.	Find the volume of water displaced and position of centre of buoyancy for a	06	L3	CO1
		wooden block of width 2.5 m and depth 1.5 m when it floats horizontally in	-		
		water. The density of wooden block is 650 kg/m^3 and its length 6.0 m.			
Module – 2					
Q.3	a.	Derive stream function and potential function for source flow and also plot	10	L2	CO2
		the streamlines and potential lines.	10		000
	b.	Derive stream function and potential function for uniform flow. Also plot	10	L2	CO2
		the streamlines and potential lines.			
OR					
Q.4	a.	Derive the continuity equation for a three dimensional steady	10	L2	CO2
	1	incompressible flow.	10	1.2	600
					CO2
Module – 3					
Q.5	a.	Derive the relation for Euler's equation and obtain Bernoulli's equation from the Euler's equation.	10	L2	CO3
	b.	How does the Bernoulli's equation helps in the production of aircraft's lift	10	L3	CO3
	D.	and also identify some of the practical application of venturimeter in the	10	LJ	COS
		aircraft's fuel system.			
OR					
Q.6	a.	Explain geometric, kinematic and dynamic similarities.	06	L1	CO3
2.0	b.	Define and derive an expression for Reynold's number and Mach number.	06	L1	CO3
	c.	State Buckingham's π theorem, the efficiency η of a fan depends on			CO3
		density ' ρ ', dynamic viscosity ' μ ' of fluid, angular velocity ' ω ', diameter			0.00
		'D' of the rotor and the discharge 'Q'. Express ' η ' in terms of			
		dimensionless parameters.			-
Module – 4					
Q.7	a.	Explain the boundary layer concept over a flat plate and also mention the	10	L3	CO2
2		boundary layer separation zone for an UAV.		20	001
	b.	Derive Von Karman's integral equation for boundary layer flows.	10	L2	CO2
1 of 2					

BAE303/BAS303 OR Derive an expression for lift and drag and by fundamental airfoil theory, Q.8 10 L2 **CO3** a. mention the drag and lift points for NACA 2412 airfoil. L3 b. Derive Kutta-Joukowski equation. 10 L2 **CO2** Module – 5 Q.9 An aeroplane is flying at an height of 15 km where the temperature is 06 L3 **CO3** a. -50° C. The speed of the plane is corresponding to M = 2.0. Assume K = 1.4, R = 287 J/kg°K. Find the speed of airplane. Derive velocity of sound wave in a fluid and express in terms of bulk b. 14 L2 **CO3** modulus. OR Q.10 Derive compressible Bernoulli's equation. a. 10 L2 **CO3** A gas is flowing through horizontal pipe at a temperature of 4°C. The 10 L2 CO₂ b. diameter of the pipe is 8 cm and at a section 1-1 in the pipe, the pressure is 30.3 N/cm² (gauge). The diameter of pipe changes from 8 cm to 4 cm at section 2-2 where pressure is 20.3 N/cm². Find velocities of gas at these sections assume isothermal process. Take R = 287.14 Nm/kgK, atmospheric pressure = 10 N/cm^2 .

* * * * *