

Third Semester B.E./B.Tech. Degree Supplementary Examination,

USN

Mar.

Time: 3 hrs.

CBCS SCHEME

June/July 2024

Mechanics of Materials

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	Μ	L	C
Q.1	a.	Define the following : i) Plane stress ii) Plane strain iv) Elasticity v) Plasticity. iii) Young's modulus	10	L1	CO1
	b.	Derive the equilibrium equations for a three dimensional stress system.	10	L3	C01
		OR			
Q.2	a.	Explain volumetric strain and obtain the expression for volumetric strain due to three mutually perpendicular stress applied in a 3D rectangular block.	10	L2	CO2
	b.	At a certain print in a strained material, has tensile stress of 500 MPa and compressive stress at 350 MPa acting on two mutually perpendicular planes and equal shear stress of 100MPa on its plane. Determine the principal stresses, position of principal plane and maximum principal stress.	10	L4	CO4
		Module – 2			
Q.3	a.	List out the different types of beams and explain the different types of loads acting on the beams.	5	L2	CO1
	b.	Show that the rate of change of bending moment is equal to the shear force.	5	L2	CO2
	c.	A simply supported beam AB of 10 meters long has supports at its ends A and B. It carries a point load of 5kN at 3 meters from A and a point load of 5 kN at 7 meters from A and a uniformly distributed load of 1 kN per meter between the point loads. Construct the shear force and bending moment diagrams for the beam.	10	L4	CO2
	des		-		
		OR	1		1
Q.4	a.	Show that $\frac{M}{I} = \frac{\sigma_b}{y} = \frac{E}{R}$ with used notations.	10	L2	CO2
	b.	An I section beam $350 \text{mm} \times 200 \text{mm}$ has a web thickness of 10 mm and a flange thickness of 20 mm. It carries a shear ring force of 100 kN at a section. Construct the shear stress distribution diagram across the section.	10	L4	CO2
		Module – 3		1	1
Q.5	a.	Derive the deflection equation EI $\frac{d^2y}{dx^2} = M$.	10	L3	CO2

BAE304

	b.	Using double integration method, evaluate the slope and deflection for a cantilever beam subjected to uniformly distributed load throughout its entire span.	10	L4	CO2
		OR			
Q.6	a.	Determine the diameter of a solid shaft which will transmit 440 kW at 280 rpm. The angle of twist should not exceed one degree per meter length and the maximum torsional shear stress is to be limited to 40 N/mm ² . Assume $G = 84 \text{ kN/mm}^2$.	10	L3	CO2
	b.	Derive an expression for crippling load in a column when both of its ends are hinged.	10	L3	CO2
		Module – 4			
Q.7	a.	Explain principles of virtual work for a rigid body and state the differences between principle of virtual work and principles of complementary virtual work.	10	L2	CO2
	b.	An overhanging beam ABC is loaded with material 2 kN/m, if it has span of 3 m as shown in Fig Q7(b). Find the reactions at A and B by applying principle of virtual work. 2 kN/m 1 kA 2 kN/m 1 kA Fig Q7(b)	10	L3	CO2
		OR		1	1
Q.8	a.	Define the following : i) Strain energy ii) Proof Resilience iii) Castiglione's second theorem iv) Maxwell's reciprocal theorem v) Saint – Venant's principle.	10	L2	CO2
	b.	Show that the strain energy stored in a body when a load is gradually applied on it is equal to $\frac{\sigma^2}{2E} \times V$ with usual notations.	10	L2	CO3
0.0		Module – 5	10	1.0	000
Q.9	a.	Explain the three types of fracture with a neat sketch.	10	L2	CO3
	b.	Explain the three stages of creep with a neat sketch.	10	L2	CO3
		OR			
Q.10	a.	What is fatigue? Classify fatigue loadings with examples.	10	L3	CO3
	b.	Explain S-N curve with a neat sketch.	10	L3	CO3
		* * * *		L	•